Suppr超能文献

新生儿组织的再生能力。

The regenerative capacity of neonatal tissues.

机构信息

Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA.

出版信息

Development. 2022 Jun 15;149(12). doi: 10.1242/dev.199819. Epub 2022 Jun 16.

Abstract

It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.

摘要

众所周知,与斑马鱼、蝾螈或两栖动物等生物相比,人类和其他哺乳动物的再生能力很弱。然而,近年来,在成年个体中通常难以自我修复的新生鼠组织中发现了再生潜能,这改变了我们对哺乳动物再生能力的理解。在这篇综述中,我们调查了已经确定具有再生或改善新生儿愈合能力的哺乳动物组织,包括心脏、耳蜗毛细胞、大脑和脊髓以及致密结缔组织。我们还强调了新生儿再生的常见和/或组织特异性机制,这些机制涉及细胞、信号通路、细胞外基质、免疫细胞和其他因素。在新生儿组织中识别出这些共同特征可能会指导具有广泛适用性的治疗策略,适用于多种成年组织。

相似文献

1
The regenerative capacity of neonatal tissues.新生儿组织的再生能力。
Development. 2022 Jun 15;149(12). doi: 10.1242/dev.199819. Epub 2022 Jun 16.
2
Turning back the cardiac regenerative clock: lessons from the neonate.逆转心脏再生时钟:来自新生儿的启示。
Trends Cardiovasc Med. 2012 Jul;22(5):128-33. doi: 10.1016/j.tcm.2012.07.008. Epub 2012 Aug 14.
7
The zebrafish as a model for complex tissue regeneration.斑马鱼作为复杂组织再生的模型。
Trends Genet. 2013 Nov;29(11):611-20. doi: 10.1016/j.tig.2013.07.003. Epub 2013 Aug 6.
9
10
Spinal Cord Regeneration in Amphibians: A Historical Perspective.两栖动物脊髓再生:历史透视。
Dev Neurobiol. 2019 May;79(5):437-452. doi: 10.1002/dneu.22669. Epub 2019 Mar 5.

本文引用的文献

8
HIC1 Represses Atoh1 Transcription and Hair Cell Differentiation in the Cochlea.HIC1 抑制耳蜗中 Atoh1 的转录和毛细胞分化。
Stem Cell Reports. 2021 Apr 13;16(4):797-809. doi: 10.1016/j.stemcr.2021.02.022. Epub 2021 Mar 25.
9
Malonate Promotes Adult Cardiomyocyte Proliferation and Heart Regeneration.丙二酸盐促进成体心肌细胞增殖和心脏再生。
Circulation. 2021 May 18;143(20):1973-1986. doi: 10.1161/CIRCULATIONAHA.120.049952. Epub 2021 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验