Suppr超能文献

基于跨示踪剂和跨协议深度迁移学习的低剂量 PET 降噪。

Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET.

机构信息

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America. Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, United States of America.

出版信息

Phys Med Biol. 2020 Sep 14;65(18):185006. doi: 10.1088/1361-6560/abae08.

Abstract

Previous studies have demonstrated the feasibility of reducing noise with deep learning-based methods for low-dose fluorodeoxyglucose (FDG) positron emission tomography (PET). This work aimed to investigate the feasibility of noise reduction for tracers without sufficient training datasets using a deep transfer learning approach, which can utilize existing networks trained by the widely available FDG datasets. In this study, the deep transfer learning strategy based on a fully 3D patch-based U-Net was investigated on a F-fluoromisonidazole (F-FMISO) dataset using single-bed scanning and a Ga-DOTATATE dataset using whole-body scanning. The datasets of F-FDG by single-bed scanning and whole-body scanning were used to obtain pre-trained U-Nets separately for subsequent cross-tracer and cross-protocol transfer learning. The full-dose PET images were used as the labels while low-dose PET images from 10% counts were used as the inputs. Three types of U-Nets were obtained: a U-Net trained by FDG dataset, a pre-trained FDG U-Net fine-tuned by another less-available tracer (FMISO/DOATATE), and a U-Net completely trained by a large number of less-available tracer datasets (FMISO/DOATATE), used as the reference U-Net. The denoising performance of the three types of U-Nets was evaluated on single-bed F-FMISO and whole-body Ga-DOTATATE separately and compared using normalized root-mean-square error (NRMSE), signal-to-noise ratio (SNR), and relative bias of region of interest (ROI). For cross-tracer transfer learning, all the U-Nets provided denoised images with similar quality for both tracers. There was no significant difference in terms of NRMSE and SNR when comparing the former two U-Nets with the reference U-Net. The ROI biases for these U-Nets were similar. For cross-tracer and cross-protocol transfer learning, the pre-trained single-bed FDG U-Net fine-tuned by whole-body DOTATATE data provided the most consistent images with the reference U-Net. Fine-tuning significantly reduced the NRMSE and the ROI bias and improved the SNR when comparing the fine-tuned U-Net with the U-Net trained by single-bed FDG only (NRMSE: 96.3% ± 21.1% versus 120.6% ± 18.5%, ROI bias: -10.5% ± 13.0% versus -14.7% ± 6.4%, SNR: 4.2 ± 1.4 versus 3.9 ± 1.6, for fine-tuned U-Net and the U-Net trained by single-bed FDG, respectively, with p < 0.01 in all cases). This work demonstrated that it is feasible to utilize existing networks well-trained by FDG datasets to reduce the noise for other less-available tracers and other scanning protocols by using the fine-tuning strategy.

摘要

先前的研究已经证明,基于深度学习的方法对于低剂量氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)降低噪声是可行的。本研究旨在通过深度转移学习方法研究使用没有足够训练数据集的示踪剂进行降噪的可行性,该方法可以利用广泛可用的 FDG 数据集训练的现有网络。在这项研究中,研究了基于完全 3D 基于补丁的 U-Net 的深度转移学习策略,该策略在 F-氟代蛋氨酸(F-FMISO)数据集上使用单床位扫描和 Ga-DOTATATE 数据集上使用全身扫描。分别使用单床位扫描和全身扫描的 F-FDG 数据集获得预训练的 U-Net,以便随后进行跨示踪剂和跨协议转移学习。全剂量 PET 图像用作标签,而 10%计数的低剂量 PET 图像用作输入。获得了三种类型的 U-Net:由 FDG 数据集训练的 U-Net、由另一种较不可用示踪剂(FMISO/DOATATE)微调的预训练 FDG U-Net,以及由大量较不可用示踪剂数据集(FMISO/DOATATE)完全训练的 U-Net,用作参考 U-Net。分别对单床位 F-FMISO 和全身 Ga-DOTATATE 上的三种 U-Net 的去噪性能进行了评估,并使用归一化均方根误差(NRMSE)、信噪比(SNR)和感兴趣区域(ROI)的相对偏差进行了比较。对于跨示踪剂转移学习,所有 U-Net 都为两种示踪剂提供了质量相似的去噪图像。在前两种 U-Net 与参考 U-Net 相比时,NRMSE 和 SNR 方面没有显着差异。这些 U-Net 的 ROI 偏差相似。对于跨示踪剂和跨协议转移学习,由全身 DOTATATE 数据预训练的单床位 FDG U-Net 对参考 U-Net 提供了最一致的图像。与仅由单床位 FDG 训练的 U-Net 相比,微调显着降低了 NRMSE 和 ROI 偏差,并提高了 SNR(NRMSE:96.3%±21.1%与 120.6%±18.5%,ROI 偏差:-10.5%±13.0%与-14.7%±6.4%,SNR:4.2±1.4 与 3.9±1.6,对于微调 U-Net 和仅由单床位 FDG 训练的 U-Net,均为 p<0.01)。这项工作表明,通过使用微调策略,利用由 FDG 数据集训练的现有网络,可以为其他较不可用的示踪剂和其他扫描协议降低噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验