The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
ACS Appl Mater Interfaces. 2023 Nov 29;15(47):54312-54321. doi: 10.1021/acsami.3c13711. Epub 2023 Nov 14.
Mild photothermal therapy (mPTT), which circumvents the limitations of conventional photothermal therapy, is emerging and exhibits remarkable potential in clinical applications. Nevertheless, mPTT is not able to efficiently eradicate tumors because its therapeutic efficacy is dramatically diminished by stress-induced heat shock proteins (HSP). Herein, a core-shell structured Au@Pd (AP) bimetallic nanozyme was fabricated for reactive oxygen species (ROS) augmentation-induced mPTT. The nanocatalytic AP nanozymes with photothermal conversion performance harbor multienzymatic (catalase, oxidase, and peroxidase) activities to induce ROS storm formation. The generated ROS could suppress the heat-defense response of tumor cells by cleaving HSP. Overall, our work highlights a ROS-regulating strategy to counteract hyperthermia-associated resistance in mPTT.
温和光热疗法(mPTT)规避了传统光热疗法的局限性,正在兴起并在临床应用中展现出显著的潜力。然而,mPTT 不能有效地消灭肿瘤,因为应激诱导的热休克蛋白(HSP)极大地降低了其治疗效果。在此,我们构建了一种核壳结构的 Au@Pd(AP)双金属纳米酶,用于增强活性氧物种(ROS)诱导的 mPTT。具有光热转换性能的纳米催化 AP 纳米酶具有多种酶(过氧化氢酶、氧化酶和过氧化物酶)活性,可诱导 ROS 风暴的形成。生成的 ROS 可以通过切割 HSP 来抑制肿瘤细胞的热防御反应。总的来说,我们的工作强调了一种 ROS 调控策略,以对抗 mPTT 中与高热相关的耐药性。