Suppr超能文献

基于改进YOLOv5s的水培生菜病叶识别

Hydroponic lettuce defective leaves identification based on improved YOLOv5s.

作者信息

Jin Xin, Jiao Haowei, Zhang Chao, Li Mingyong, Zhao Bo, Liu Guowei, Ji Jiangtao

机构信息

College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China.

Science and Technology Innovation Center for Completed Set Equipment, Longmen Laboratory, Luoyang, China.

出版信息

Front Plant Sci. 2023 Oct 26;14:1242337. doi: 10.3389/fpls.2023.1242337. eCollection 2023.

Abstract

Achieving intelligent detection of defective leaves of hydroponic lettuce after harvesting is of great significance for ensuring the quality and value of hydroponic lettuce. In order to improve the detection accuracy and efficiency of hydroponic lettuce defective leaves, firstly, an image acquisition system is designed and used to complete image acquisition for defective leaves of hydroponic lettuce. Secondly, this study proposed EBG_YOLOv5 model which optimized the YOLOv5 model by integrating the attention mechanism ECA in the backbone and introducing bidirectional feature pyramid and GSConv modules in the neck. Finally, the performance of the improved model was verified by ablation experiments and comparison experiments. The experimental results proved that, the Precision, Recall rate and mAP of the EBG_YOLOv5 were 0.1%, 2.0% and 2.6% higher than those of YOLOv5s, respectively, while the model size, GFLOPs and Parameters are reduced by 15.3%, 18.9% and 16.3%. Meanwhile, the accuracy and model size of EBG_YOLOv5 were higher and smaller compared with other detection algorithms. This indicates that the EBG_YOLOv5 being applied to hydroponic lettuce defective leaves detection can achieve better performance. It can provide technical support for the subsequent research of lettuce intelligent nondestructive classification equipment.

摘要

实现水培生菜采收后缺陷叶片的智能检测对于保证水培生菜的品质和价值具有重要意义。为了提高水培生菜缺陷叶片的检测精度和效率,首先设计了图像采集系统,用于完成水培生菜缺陷叶片的图像采集。其次,本研究提出了EBG_YOLOv5模型,该模型通过在主干中集成注意力机制ECA以及在颈部引入双向特征金字塔和GSConv模块对YOLOv5模型进行了优化。最后,通过消融实验和对比实验验证了改进模型的性能。实验结果表明,EBG_YOLOv5的精度、召回率和mAP分别比YOLOv5s高0.1%、2.0%和2.6%,而模型大小、GFLOPs和参数分别减少了15.3%、18.9%和16.3%。同时,与其他检测算法相比,EBG_YOLOv5的精度更高,模型大小更小。这表明将EBG_YOLOv5应用于水培生菜缺陷叶片检测能够取得更好的性能。可为后续生菜智能无损分级设备的研究提供技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f3/10641003/8248f15ea018/fpls-14-1242337-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验