University of Science and Technology of China, Hefei 230026, China.
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
Nano Lett. 2023 Dec 13;23(23):11099-11104. doi: 10.1021/acs.nanolett.3c03448. Epub 2023 Nov 15.
Nano-impact electrochemistry (NIE) enables simple, rapid, and high-throughput biocoupling and biomolecular recognition. However, the low effective collision frequency limits the sensitivity. In this study, we propose a novel NIE sensing strategy amplified by the CRISPR-responsive DNA hydrogel and cascade DNA assembly. By controlling the phase transition of DNA hydrogel and the self-electrolysis of silver nanoparticles, we can obtain significant electrochemical responses. The whole process includes target miRNA-induced strand displacement amplification, catalytic hairpin assembly, and CRISPR/Cas trans-cutting. Thus, ultrahigh sensitivity is promised. This NIE biosensing strategy achieves a limit of detection as low as 4.21 aM for miR-141 and demonstrates a high specificity for practical applications. It may have wide applicability in nucleic acid sensing and shows great potential in disease diagnosis.
纳米冲击电化学(NIE)可实现简单、快速和高通量的生物偶联和生物分子识别。然而,低的有效碰撞频率限制了其灵敏度。在本研究中,我们提出了一种新的 NIE 传感策略,该策略通过 CRISPR 响应性 DNA 水凝胶和级联 DNA 组装进行放大。通过控制 DNA 水凝胶的相转变和银纳米粒子的自电解,我们可以获得显著的电化学响应。整个过程包括靶 miRNA 诱导的链置换扩增、催化发夹组装和 CRISPR/Cas 转切。因此,超高的灵敏度得以实现。这种 NIE 生物传感策略对 miR-141 的检测限低至 4.21 aM,并表现出实际应用的高特异性。它在核酸传感方面具有广泛的适用性,在疾病诊断方面具有巨大的潜力。