Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
ACS Appl Bio Mater. 2023 Dec 18;6(12):5695-5707. doi: 10.1021/acsabm.3c00833. Epub 2023 Nov 16.
The poly(3,4-ethylenedioxythiophene) (PEDOT) interface, renowned for its biocompatibility and intrinsic conductivity, holds substantial potential in biosensing and cellular modulation. Through strategic functionalization, PEDOT derivatives can be adaptable for multifaceted applications. Notably, integrating phosphorylcholine (PC) groups into PEDOT, mimicking the hydrophilic headgroups from cell membranes, confers exceptional antifouling properties on the coating. This study systematically investigated biomolecule interactions with distinct forms of PEDOT, incorporating variations in surface modifications and structure. Zwitterionic PEDOT-PC was electropolymerized on smooth and nanostructured surfaces using various feeding ratios in electrolytes to finely control the antifouling properties of the interface. Precise electropolymerization conditions governed the attainment of smooth and nanostructured filamentous surfaces. The study employed a quartz crystal microbalance with dissipation (QCM-D) to assess protein binding behavior. Bovine serum albumin (BSA), lysozyme (LYZ), cytochrome c (cyt c), and fibronectin (FN) were used to evaluate their binding affinities for PEDOT films. FN, a pivotal extracellular matrix component, was included for connecting to cell adhesion behavior. Furthermore, the cellular adhesion behaviors on PEDOT interfaces were evaluated. Three cell lines─MG-63 osteosarcoma, HeLa cervical cancer, and fibroblast NIH/3T3 were examined. The presence of PC moieties significantly altered the adhesive response, including the number of attached cells, their morphologies, and nucleus shrinkage. MG-63 cells exhibited the highest tolerance for PC moieties. A feeding ratio of PEDOT-PC exceeding 70% resulted in cell apoptosis. This study contributes to understanding biomolecule adsorption on PEDOT surfaces of diverse morphologies and degrees of the antifouling moiety. Meanwhile, it also sheds light on the responses of various cell types.
聚 3,4-亚乙基二氧噻吩(PEDOT)因其生物相容性和固有导电性而备受关注,在生物传感和细胞调制方面具有巨大的潜力。通过策略性的功能化,PEDOT 衍生物可以适应多种应用。值得注意的是,将磷酸胆碱(PC)基团整合到 PEDOT 中,模拟细胞膜的亲水头基,可以赋予涂层出色的抗污性能。本研究系统地研究了具有不同表面修饰和结构的 PEDOT 与生物分子的相互作用。通过在电解质中使用不同的进料比将两性离子 PEDOT-PC 电聚合到光滑和纳米结构的表面上,精细控制界面的抗污性能。精确的电聚合条件控制了光滑和纳米结构丝状表面的获得。该研究采用石英晶体微天平(QCM-D)评估蛋白质结合行为。使用牛血清白蛋白(BSA)、溶菌酶(LYZ)、细胞色素 c(cyt c)和纤维连接蛋白(FN)来评估它们与 PEDOT 薄膜的结合亲和力。FN 是细胞外基质的重要组成部分,用于连接细胞黏附行为。此外,还评估了 PEDOT 界面上的细胞黏附行为。研究了三种细胞系——MG-63 骨肉瘤、HeLa 宫颈癌和成纤维细胞 NIH/3T3。PC 部分的存在显著改变了黏附反应,包括附着细胞的数量、它们的形态和细胞核收缩。MG-63 细胞对 PC 部分的耐受性最高。PEDOT-PC 的进料比超过 70%会导致细胞凋亡。本研究有助于了解不同形态和抗污部分程度的 PEDOT 表面上的生物分子吸附。同时,它还揭示了各种细胞类型的反应。