Chen Yue, Luo Shyh-Chyang
Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan.
Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 10617 , Taiwan.
Langmuir. 2019 Feb 5;35(5):1199-1210. doi: 10.1021/acs.langmuir.8b02122. Epub 2018 Aug 22.
For electrified surfaces, ions and applied potentials play major roles in controlling the surface properties. Antifouling materials such as poly(ethylene glycol) and zwitterionic polymers that resist nonspecific protein binding and cell adhesion play a key role in various biomedical applications. In this study, we investigated and compared the antifouling properties of conducting polymers grafted with oligo(ethylene glycol) groups and phosphorylcholine (PC) groups in the presence of different anions and applied potentials. Considerable effort has been made to illustrate the different effects of manipulating the antifouling properties of these two surfaces. We prepared polymer films by applying electropolymerization to two functionalized (3,4-ethylenedioxythiophene) polymers containing triethylene glycol and PC groups, respectively. A quartz crystal microbalance with dissipation (QCM-D) was employed to characterize the negatively charged bovine serum albumin and positively charged lysozyme adsorption as a function of ionic concentration in the presence of various Hofmeister anions. The frequency changes corresponded to the protein or ion adsorption/desorption behavior on the surface. The anions adsorbed on polymer films to effectively enhance the hydration layer of the polymer surface and reduce nonspecific protein binding. We further integrated a potentiostat with the QCM-D to control the protein adsorption/desorption behaviors by applying potentials, and we conducted an electrochemical QCM-D study. Most importantly, with the synergistic effect of ions and surface potential, a nearly fresh polymer surface was regenerated. This study describes principles to maintain and regenerate the antifouling properties of electrified surfaces, which are critical for implanted bioelectronics applications.
对于带电表面,离子和外加电势在控制表面性质方面起着主要作用。诸如聚乙二醇和两性离子聚合物等具有抗非特异性蛋白质结合和细胞粘附功能的防污材料在各种生物医学应用中发挥着关键作用。在本研究中,我们研究并比较了在不同阴离子和外加电势存在下,接枝有低聚乙二醇基团和磷酰胆碱(PC)基团的导电聚合物的防污性能。我们付出了相当大的努力来说明操纵这两种表面的防污性能所产生的不同效果。我们分别通过对含有三甘醇和PC基团的两种功能化(3,4-亚乙基二氧噻吩)聚合物进行电聚合来制备聚合物薄膜。采用带耗散监测的石英晶体微天平(QCM-D)来表征在各种霍夫迈斯特阴离子存在下,带负电荷的牛血清白蛋白和带正电荷的溶菌酶吸附量随离子浓度的变化情况。频率变化对应于表面上蛋白质或离子的吸附/解吸行为。阴离子吸附在聚合物薄膜上,有效地增强了聚合物表面的水化层并减少了非特异性蛋白质结合。我们进一步将恒电位仪与QCM-D集成,通过施加电势来控制蛋白质的吸附/解吸行为,并进行了电化学QCM-D研究。最重要的是,在离子和表面电势的协同作用下,几乎全新的聚合物表面得以再生。本研究描述了维持和再生带电表面防污性能的原理,这对于植入式生物电子应用至关重要。