Suppr超能文献

利用总减重百分比和超重减重百分比实现预测内镜袖状胃切除术成功的机器学习模型:一项多中心研究。

Machine learning models to predict success of endoscopic sleeve gastroplasty using total and excess weight loss percent achievement: a multicentre study.

机构信息

General Surgery Department, University of Torino, Turin, Italy.

Research Institute Against Digestive Cancer (IRCAD), Strasbourg, France.

出版信息

Surg Endosc. 2024 Jan;38(1):229-239. doi: 10.1007/s00464-023-10520-0. Epub 2023 Nov 16.

Abstract

BACKGROUND

The large amount of heterogeneous data collected in surgical/endoscopic practice calls for data-driven approaches as machine learning (ML) models. The aim of this study was to develop ML models to predict endoscopic sleeve gastroplasty (ESG) efficacy at 12 months defined by total weight loss (TWL) % and excess weight loss (EWL) % achievement. Multicentre data were used to enhance generalizability: evaluate consistency among different center of ESG practice and assess reproducibility of the models and possible clinical application. Models were designed to be dynamic and integrate follow-up clinical data into more accurate predictions, possibly assisting management and decision-making.

METHODS

ML models were developed using data of 404 ESG procedures performed at 12 centers across Europe. Collected data included clinical and demographic variables at the time of ESG and at follow-up. Multicentre/external and single center/internal and temporal validation were performed. Training and evaluation of the models were performed on Python's scikit-learn library. Performance of models was quantified as receiver operator curve (ROC-AUC), sensitivity, specificity, and calibration plots.

RESULTS

Multicenter external validation: ML models using preoperative data show poor performance. Best performances were reached by linear regression (LR) and support vector machine models for TWL% and EWL%, respectively, (ROC-AUC: TWL% 0.87, EWL% 0.86) with the addition of 6-month follow-up data. Single-center internal validation: Preoperative data only ML models show suboptimal performance. Early, i.e., 3-month follow-up data addition lead to ROC-AUC of 0.79 (random forest classifiers model) and 0.81 (LR models) for TWL% and EWL% achievement prediction, respectively. Single-center temporal validation shows similar results.

CONCLUSIONS

Although preoperative data only may not be sufficient for accurate postoperative predictions, the ability of ML models to adapt and evolve with the patients changes could assist in providing an effective and personalized postoperative care. ML models predictive capacity improvement with follow-up data is encouraging and may become a valuable support in patient management and decision-making.

摘要

背景

外科/内镜实践中收集到的大量异质数据需要采用机器学习 (ML) 模型等数据驱动方法。本研究旨在开发 ML 模型,以预测内镜袖状胃成形术 (ESG) 术后 12 个月的疗效,疗效定义为总体重减轻 (TWL) %和超重减轻 (EWL) %的达标率。多中心数据用于提高通用性:评估不同 ESG 实践中心之间的一致性,并评估模型的可重复性和可能的临床应用。模型旨在具有动态性,并将随访临床数据纳入更准确的预测中,以辅助管理和决策制定。

方法

使用来自欧洲 12 个中心的 404 例 ESG 手术的数据开发 ML 模型。收集的数据包括 ESG 时和随访时的临床和人口统计学变量。进行了多中心/外部和单中心/内部以及时间验证。模型的训练和评估在 Python 的 scikit-learn 库中进行。通过接收者操作曲线 (ROC-AUC)、敏感性、特异性和校准图来量化模型的性能。

结果

多中心外部验证:使用术前数据的 ML 模型表现不佳。线性回归 (LR) 和支持向量机模型在添加 6 个月随访数据后,分别在 TWL%和 EWL%方面达到最佳性能 (ROC-AUC:TWL% 0.87,EWL% 0.86)。单中心内部验证:仅使用术前数据的 ML 模型表现不佳。添加早期,即 3 个月随访数据后,TWL%和 EWL%达标预测的 ROC-AUC 分别为 0.79(随机森林分类器模型)和 0.81(LR 模型)。单中心时间验证得到了类似的结果。

结论

虽然仅使用术前数据可能不足以进行准确的术后预测,但 ML 模型适应和随患者变化而演变的能力可能有助于提供有效的个性化术后护理。随着随访数据的增加,ML 模型的预测能力有所提高,这令人鼓舞,并可能成为患者管理和决策制定的有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/10776503/5e84cef5ff0e/464_2023_10520_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验