Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France.
Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France.
Curr Opin Cell Biol. 2023 Dec;85:102278. doi: 10.1016/j.ceb.2023.102278. Epub 2023 Nov 16.
As cells organize spatially or divide, they translocate many micron-scale organelles in their cytoplasm. These include endomembrane vesicles, nuclei, microtubule asters, mitotic spindles, or chromosomes. Organelle motion is powered by cytoskeleton forces but is opposed by viscoelastic forces imparted by the surrounding crowded cytoplasm medium. These resistive forces associated to cytoplasm physcial properties remain generally underappreciated, yet reach significant values to slow down organelle motion or even limit their displacement by springing them back towards their original position. The cytoplasm may also be itself organized in time and space, being for example stiffer or more fluid at certain locations or during particular cell cycle phases. Thus, cytoplasm mechanics may be viewed as a labile module that contributes to organize cells. We here review emerging methods, mechanisms, and concepts to study cytoplasm mechanical properties and their function in organelle positioning, cellular organization and division.
当细胞在空间上组织或分裂时,它们会在细胞质中转运许多微米级的细胞器。这些细胞器包括内膜囊泡、核、微管星状体、有丝分裂纺锤体或染色体。细胞器的运动由细胞骨架力驱动,但受到周围拥挤细胞质介质传递的粘弹性力的阻碍。这些与细胞质物理性质相关的阻力通常被低估,但它们的值很大,足以减缓细胞器的运动,甚至通过将它们弹回原来的位置来限制它们的位移。细胞质也可能在时间和空间上被组织起来,例如在某些位置或在特定的细胞周期阶段更硬或更具流动性。因此,细胞质力学可以看作是一个不稳定的模块,有助于细胞的组织。我们在这里回顾了新兴的方法、机制和概念,以研究细胞质的力学性质及其在细胞器定位、细胞组织和分裂中的功能。