Zhou Xinkai, Heng Qiang, Chi Eric C, Zhou Hua
Department of Biostatistics, UCLA.
Department of Computational Medicine, UCLA.
Am Stat. 2024;78(4):379-390. doi: 10.1080/00031305.2024.2308821. Epub 2024 Feb 26.
This paper advocates proximal Markov Chain Monte Carlo (ProxMCMC) as a flexible and general Bayesian inference framework for constrained or regularized estimation. Originally introduced in the Bayesian imaging literature, ProxMCMC employs the Moreau-Yosida envelope for a smooth approximation of the total-variation regularization term, fixes variance and regularization strength parameters as constants, and uses the Langevin algorithm for the posterior sampling. We extend ProxMCMC to be fully Bayesian by providing data-adaptive estimation of all parameters including the regularization strength parameter. More powerful sampling algorithms such as Hamiltonian Monte Carlo are employed to scale ProxMCMC to high-dimensional problems. Analogous to the proximal algorithms in optimization, ProxMCMC offers a versatile and modularized procedure for conducting statistical inference on constrained and regularized problems. The power of ProxMCMC is illustrated on various statistical estimation and machine learning tasks, the inference of which is traditionally considered difficult from both frequentist and Bayesian perspectives.
本文提倡将近端马尔可夫链蒙特卡罗(ProxMCMC)作为一种灵活通用的贝叶斯推理框架,用于约束估计或正则化估计。ProxMCMC最初是在贝叶斯成像文献中引入的,它使用莫罗-约西达包络对总变差正则化项进行平滑近似,将方差和正则化强度参数固定为常数,并使用朗之万算法进行后验采样。我们通过对包括正则化强度参数在内的所有参数进行数据自适应估计,将ProxMCMC扩展为完全贝叶斯方法。采用更强大的采样算法,如哈密顿蒙特卡罗算法,将ProxMCMC扩展到高维问题。类似于优化中的近端算法,ProxMCMC为对约束和正则化问题进行统计推断提供了一种通用且模块化的程序。ProxMCMC的强大功能在各种统计估计和机器学习任务中得到了体现,从频率主义和贝叶斯的角度来看,传统上认为这些任务的推断都很困难。