Suppr超能文献

用于约束和正则化估计的贝叶斯推断的近端马尔可夫链蒙特卡罗方法

Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.

作者信息

Zhou Xinkai, Heng Qiang, Chi Eric C, Zhou Hua

机构信息

Department of Biostatistics, UCLA.

Department of Computational Medicine, UCLA.

出版信息

Am Stat. 2024;78(4):379-390. doi: 10.1080/00031305.2024.2308821. Epub 2024 Feb 26.

Abstract

This paper advocates proximal Markov Chain Monte Carlo (ProxMCMC) as a flexible and general Bayesian inference framework for constrained or regularized estimation. Originally introduced in the Bayesian imaging literature, ProxMCMC employs the Moreau-Yosida envelope for a smooth approximation of the total-variation regularization term, fixes variance and regularization strength parameters as constants, and uses the Langevin algorithm for the posterior sampling. We extend ProxMCMC to be fully Bayesian by providing data-adaptive estimation of all parameters including the regularization strength parameter. More powerful sampling algorithms such as Hamiltonian Monte Carlo are employed to scale ProxMCMC to high-dimensional problems. Analogous to the proximal algorithms in optimization, ProxMCMC offers a versatile and modularized procedure for conducting statistical inference on constrained and regularized problems. The power of ProxMCMC is illustrated on various statistical estimation and machine learning tasks, the inference of which is traditionally considered difficult from both frequentist and Bayesian perspectives.

摘要

本文提倡将近端马尔可夫链蒙特卡罗(ProxMCMC)作为一种灵活通用的贝叶斯推理框架,用于约束估计或正则化估计。ProxMCMC最初是在贝叶斯成像文献中引入的,它使用莫罗-约西达包络对总变差正则化项进行平滑近似,将方差和正则化强度参数固定为常数,并使用朗之万算法进行后验采样。我们通过对包括正则化强度参数在内的所有参数进行数据自适应估计,将ProxMCMC扩展为完全贝叶斯方法。采用更强大的采样算法,如哈密顿蒙特卡罗算法,将ProxMCMC扩展到高维问题。类似于优化中的近端算法,ProxMCMC为对约束和正则化问题进行统计推断提供了一种通用且模块化的程序。ProxMCMC的强大功能在各种统计估计和机器学习任务中得到了体现,从频率主义和贝叶斯的角度来看,传统上认为这些任务的推断都很困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f73/11670895/c7da5b8d43ca/nihms-1968735-f0001.jpg

相似文献

2
Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo.通过近端马尔可夫链蒙特卡罗方法实现的贝叶斯趋势滤波
J Comput Graph Stat. 2023;32(3):938-949. doi: 10.1080/10618600.2023.2170089. Epub 2023 Mar 2.
3
Variational Hamiltonian Monte Carlo via Score Matching.通过得分匹配的变分哈密顿蒙特卡罗方法
Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25.
4
A general construction for parallelizing Metropolis-Hastings algorithms.一种并行化 Metropolis-Hastings 算法的通用构造。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.

本文引用的文献

1
Algorithms for Sparse Support Vector Machines.稀疏支持向量机算法
J Comput Graph Stat. 2023;32(3):1097-1108. doi: 10.1080/10618600.2022.2146697. Epub 2022 Dec 13.
2
Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo.通过近端马尔可夫链蒙特卡罗方法实现的贝叶斯趋势滤波
J Comput Graph Stat. 2023;32(3):938-949. doi: 10.1080/10618600.2023.2170089. Epub 2023 Mar 2.
5
Algorithms for Fitting the Constrained Lasso.用于拟合约束套索的算法
J Comput Graph Stat. 2018;27(4):861-871. doi: 10.1080/10618600.2018.1473777. Epub 2018 Aug 7.
6
Post-Selection Inference for -Penalized Likelihood Models.用于惩罚似然模型的选择后推断
Can J Stat. 2018 Mar;46(1):41-61. doi: 10.1002/cjs.11313. Epub 2017 Mar 6.
7
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
8
Distance majorization and its applications.距离优化及其应用。
Math Program. 2014 Aug 1;146:409-436. doi: 10.1007/s10107-013-0697-1.
10
Regularized matrix regression.正则化矩阵回归
J R Stat Soc Series B Stat Methodol. 2014 Mar 1;76(2):463-483. doi: 10.1111/rssb.12031.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验