Suppr超能文献

功能性铁磁流体机器人的三维运动与变形相结合

Combined three dimensional locomotion and deformation of functional ferrofluidic robots.

作者信息

Fan Xinjian, Zhang Yunfei, Wu Zhengnan, Xie Hui, Sun Lining, Chen Tao, Yang Zhan

机构信息

School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.

Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.

出版信息

Nanoscale. 2023 Dec 14;15(48):19499-19513. doi: 10.1039/d3nr02535g.

Abstract

Magnetic microrobots possess remarkable potential for targeted applications in the medical field, primarily due to their non-invasive, controllable properties. These unique qualities have garnered increased attention and fascination among researchers. However, these robotic systems do face challenges such as limited deformation capabilities and difficulties navigating confined spaces. Recently, researchers have turned their attention towards magnetic droplet robots, which are notable for their superior deformability, controllability, and potential for a range of applications such as automated virus detection and targeted drug delivery. Despite these advantages, the majority of current research is constrained to two-dimensional deformation and motion, thereby limiting their broader functionality. In response to these limitations, this study proposes innovative strategies for controlling deformation and achieving a three-dimensional (3D) trajectory in ferrofluidic robots. These strategies leverage a custom-designed eight-axis electromagnetic coil and a sliding mode controller. The implementation of these methods exhibits the potential of ferrofluidic robots in diverse applications, including microfluidic pump systems, 3D micromanipulation, and selective vascular occlusion. In essence, this study aims to broaden the capabilities of ferrofluidic robots, thereby enhancing their applicability across a multitude of fields such as medicine, micromanipulation, bioengineering, and more by maximizing the potential of these intricate robotic systems.

摘要

磁性微型机器人在医学领域的靶向应用中具有显著潜力,主要是因为它们具有非侵入性、可控性等特性。这些独特的品质在研究人员中引起了越来越多的关注和兴趣。然而,这些机器人系统确实面临一些挑战,比如变形能力有限以及在受限空间中导航困难。最近,研究人员将注意力转向了磁性液滴机器人,这种机器人以其卓越的可变形性、可控性以及在诸如自动病毒检测和靶向给药等一系列应用中的潜力而著称。尽管有这些优点,但目前大多数研究局限于二维变形和运动,从而限制了它们更广泛的功能。针对这些局限性,本研究提出了控制铁磁流体机器人变形并实现三维(3D)轨迹的创新策略。这些策略利用了定制设计的八轴电磁线圈和滑模控制器。这些方法的实施展示了铁磁流体机器人在各种应用中的潜力,包括微流体泵系统、3D微操作和选择性血管闭塞。本质上,本研究旨在拓宽铁磁流体机器人的能力,从而通过最大限度地发挥这些复杂机器人系统的潜力,提高它们在医学、微操作、生物工程等众多领域的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验