Fan Xinjian, Jiang Yihui, Li Mingtong, Zhang Yunfei, Tian Chenyao, Mao Liyang, Xie Hui, Sun Lining, Yang Zhan, Sitti Metin
School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart 70569, Germany.
Sci Adv. 2022 Sep 16;8(37):eabq1677. doi: 10.1126/sciadv.abq1677.
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR's scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (MRA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
磁性微型软机器人通过将侵入性和可能的物理损伤降至最低,在促进生物医学应用方面显示出巨大潜力。然而,研究人员主要关注固定尺寸的机器人,只有当这些受限空间的横截面尺寸与机器人的尺寸相当时,它们的主动运动才能实现。在此,我们基于铁磁流体液滴实现了尺度可重构的微型铁磁流体机器人(SMFR),并通过设计多尺度磁性微型机器人驱动(MRA)系统,提出了一系列用于重构SMFR尺度和变形的控制策略,以实现跨尺度运动控制。结果表明,尺寸从厘米级到几微米级的SMFR利用了多种能力,如在结构化环境中运动、变形以挤过缝隙,甚至进行可逆的尺度重构以在急剧变化的空间中导航。具有这些综合能力的微型机器人系统有望应用于未来人体受限区域内的无线医疗机器人。