IEEE Trans Neural Syst Rehabil Eng. 2022;30:2651-2660. doi: 10.1109/TNSRE.2022.3204913. Epub 2022 Sep 22.
Alzheimer's disease (AD) is the leading form of dementia worldwide. AD disrupts neuronal pathways and thus is commonly viewed as a network disorder. Many studies demonstrate the power of functional connectivity (FC) graph-based biomarkers for automated diagnosis of AD using electroencephalography (EEG). However, various FC measures are commonly utilised, as each aims to quantify a unique aspect of brain coupling. Graph neural networks (GNN) provide a powerful framework for learning on graphs. While a growing number of studies use GNN to classify EEG brain graphs, it is unclear which method should be utilised to estimate the brain graph. We use eight FC measures to estimate FC brain graphs from sensor-level EEG signals. GNN models are trained in order to compare the performance of the selected FC measures. Additionally, three baseline models based on literature are trained for comparison. We show that GNN models perform significantly better than the other baseline models. Moreover, using FC measures to estimate brain graphs improves the performance of GNN compared to models trained using a fixed graph based on the spatial distance between the EEG sensors. However, no FC measure performs consistently better than the other measures. The best GNN reaches 0.984 area under sensitivity-specificity curve (AUC) and 92% accuracy, whereas the best baseline model, a convolutional neural network, has 0.924 AUC and 84.7% accuracy.
阿尔茨海默病(AD)是全球范围内导致痴呆的主要形式。AD 扰乱了神经元通路,因此通常被视为一种网络紊乱。许多研究表明,基于功能连接(FC)图的生物标志物在使用脑电图(EEG)对 AD 进行自动诊断方面具有强大的作用。然而,通常会使用各种 FC 测量方法,因为每种方法都旨在量化大脑耦合的独特方面。图神经网络(GNN)为图上的学习提供了强大的框架。虽然越来越多的研究使用 GNN 对 EEG 脑图进行分类,但仍不清楚应该使用哪种方法来估计脑图。我们使用了 8 种 FC 测量方法,从传感器级 EEG 信号中估计 FC 脑图。训练 GNN 模型以比较所选 FC 测量方法的性能。此外,还训练了基于文献的三个基线模型进行比较。我们表明,GNN 模型的性能明显优于其他基线模型。此外,与使用基于 EEG 传感器空间距离的固定图训练的模型相比,使用 FC 测量方法来估计脑图可以提高 GNN 的性能。然而,没有任何一种 FC 测量方法始终比其他方法表现更好。最佳 GNN 的灵敏度-特异性曲线(AUC)下面积达到 0.984,准确率为 92%,而最佳基线模型(卷积神经网络)的 AUC 为 0.924,准确率为 84.7%。