Zhang Denghui, Zhu Chenxuan
College of Information Science and Technology, Zhejiang Shuren University, Hangzhou, 310015, China.
School of Information Engineering, Huzhou University, Huzhou, 313000, China.
Sci Rep. 2025 Jul 2;15(1):23319. doi: 10.1038/s41598-025-06519-3.
Dementia typically results from damage to neural pathways and the consequent degeneration of neuronal connections. Graph neural networks (GNNs) have been widely employed to model complex brain networks. However, leveraging the complementary temporal, spatial, and spectral features for diagnosing neurocognitive disorders remains challenging. To address this issue, we propose a Bi-path Multi-scale Graph Neural Network (Bi-MCGNN), which integrates two paths : one focusing on time and spatial relationships, and the other on spatial and frequency patterns. By unifying these pathways, Bi-MCGNN integrates diverse brain features into a single framework. In order to more effectively represent brain networks, we designed specialized correlation matrixs to reinforce the constructed graph. We then performed multi-scale graph convolution to analyze brain connectivity at varying resolutions-from fine-grained to more extensive patterns, and ultimately employed an attention mechanism to enhance features across different domains. Extensive experiments on two real-world datasets demonstrate that our model outperforms state-of-the-art baselines.
痴呆症通常源于神经通路受损以及随之而来的神经元连接退化。图神经网络(GNN)已被广泛用于对复杂的大脑网络进行建模。然而,利用互补的时间、空间和频谱特征来诊断神经认知障碍仍然具有挑战性。为了解决这个问题,我们提出了一种双路径多尺度图神经网络(Bi-MCGNN),它集成了两条路径:一条专注于时间和空间关系,另一条专注于空间和频率模式。通过统一这些路径,Bi-MCGNN将不同的大脑特征整合到一个单一框架中。为了更有效地表示大脑网络,我们设计了专门的相关矩阵来强化构建的图。然后我们进行了多尺度图卷积,以分析从细粒度到更广泛模式的不同分辨率下的大脑连通性,并最终采用注意力机制来增强不同域的特征。在两个真实世界数据集上进行的大量实验表明,我们的模型优于现有最先进的基线模型。
Sci Rep. 2025-7-2
Interdiscip Sci. 2025-6-26
J Prev Alzheimers Dis. 2025-5
Front Comput Neurosci. 2025-6-9
Bioinformatics. 2025-7-1
Sci Rep. 2024-10-17
Front Neurosci. 2023-9-25
IEEE Trans Neural Syst Rehabil Eng. 2023
IEEE Trans Neural Syst Rehabil Eng. 2023