文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于痴呆症诊断的双路径图神经网络框架。

A dual path graph neural network framework for dementia diagnosis.

作者信息

Zhang Denghui, Zhu Chenxuan

机构信息

College of Information Science and Technology, Zhejiang Shuren University, Hangzhou, 310015, China.

School of Information Engineering, Huzhou University, Huzhou, 313000, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):23319. doi: 10.1038/s41598-025-06519-3.


DOI:10.1038/s41598-025-06519-3
PMID:40604054
Abstract

Dementia typically results from damage to neural pathways and the consequent degeneration of neuronal connections. Graph neural networks (GNNs) have been widely employed to model complex brain networks. However, leveraging the complementary temporal, spatial, and spectral features for diagnosing neurocognitive disorders remains challenging. To address this issue, we propose a Bi-path Multi-scale Graph Neural Network (Bi-MCGNN), which integrates two paths : one focusing on time and spatial relationships, and the other on spatial and frequency patterns. By unifying these pathways, Bi-MCGNN integrates diverse brain features into a single framework. In order to more effectively represent brain networks, we designed specialized correlation matrixs to reinforce the constructed graph. We then performed multi-scale graph convolution to analyze brain connectivity at varying resolutions-from fine-grained to more extensive patterns, and ultimately employed an attention mechanism to enhance features across different domains. Extensive experiments on two real-world datasets demonstrate that our model outperforms state-of-the-art baselines.

摘要

痴呆症通常源于神经通路受损以及随之而来的神经元连接退化。图神经网络(GNN)已被广泛用于对复杂的大脑网络进行建模。然而,利用互补的时间、空间和频谱特征来诊断神经认知障碍仍然具有挑战性。为了解决这个问题,我们提出了一种双路径多尺度图神经网络(Bi-MCGNN),它集成了两条路径:一条专注于时间和空间关系,另一条专注于空间和频率模式。通过统一这些路径,Bi-MCGNN将不同的大脑特征整合到一个单一框架中。为了更有效地表示大脑网络,我们设计了专门的相关矩阵来强化构建的图。然后我们进行了多尺度图卷积,以分析从细粒度到更广泛模式的不同分辨率下的大脑连通性,并最终采用注意力机制来增强不同域的特征。在两个真实世界数据集上进行的大量实验表明,我们的模型优于现有最先进的基线模型。

相似文献

[1]
A dual path graph neural network framework for dementia diagnosis.

Sci Rep. 2025-7-2

[2]
NeuroEmo: A neuroimaging-based fMRI dataset to extract temporal affective brain dynamics for Indian movie video clips stimuli using dynamic functional connectivity approach with graph convolution neural network (DFC-GCNN).

Comput Biol Med. 2025-8

[3]
stGNN: Spatially Informed Cell-Type Deconvolution Based on Deep Graph Learning and Statistical Modeling.

Interdiscip Sci. 2025-6-26

[4]
Application of a metabolic network-based graph neural network for the identification of toxicant-induced perturbations.

Toxicol Sci. 2025-7-1

[5]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[6]
Nonsuicidal self-injury prediction with pain-processing neural circuits using interpretable graph neural network.

Ann Med. 2025-12

[7]
Multi-atlas ensemble graph neural network model for major depressive disorder detection using functional MRI data.

Front Comput Neurosci. 2025-6-9

[8]
Perplexity of utterances in untreated first-episode psychosis: an ultra-high field MRI dynamic causal modelling study of the semantic network.

J Psychiatry Neurosci. 2024

[9]
Differentiable graph clustering with structural grouping for single-cell RNA-seq data.

Bioinformatics. 2025-7-1

[10]
Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder.

Sci Rep. 2025-7-2

本文引用的文献

[1]
Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.

Brain Sci. 2025-1-14

[2]
An adaptive multi-graph neural network with multimodal feature fusion learning for MDD detection.

Sci Rep. 2024-11-18

[3]
Fusing convolutional learning and attention-based Bi-LSTM networks for early Alzheimer's diagnosis from EEG signals towards IoMT.

Sci Rep. 2024-10-29

[4]
Differentiating neurodegenerative diseases based on EEG complexity.

Sci Rep. 2024-10-17

[5]
Changes of brain functional network in Alzheimer's disease and frontotemporal dementia: a graph-theoretic analysis.

BMC Neurosci. 2024-7-4

[6]
Dementia classification using a graph neural network on imaging of effective brain connectivity.

Comput Biol Med. 2024-1

[7]
Multi-feature fusion learning for Alzheimer's disease prediction using EEG signals in resting state.

Front Neurosci. 2023-9-25

[8]
Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of Alzheimer's Disease Using EEG Data.

IEEE Trans Neural Syst Rehabil Eng. 2023

[9]
Computational methods of EEG signals analysis for Alzheimer's disease classification.

Sci Rep. 2023-5-20

[10]
EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization.

IEEE Trans Neural Syst Rehabil Eng. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索