Arvidsson Ida, Strandberg Olof, Palmqvist Sebastian, Stomrud Erik, Cullen Nicholas, Janelidze Shorena, Tideman Pontus, Heyden Anders, Åström Karl, Hansson Oskar, Mattsson-Carlgren Niklas
Lund University.
Res Sq. 2023 Nov 8:rs.3.rs-3569391. doi: 10.21203/rs.3.rs-3569391/v1.
Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions.
A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: 1) clinical data only, including demographics, cognitive tests and e4 status, 2) clinical data plus hippocampal volume, 3) clinical data plus all regional MRI gray matter volumes (N=68) extracted using FreeSurfer software, 4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. Models were developed on 80% of subjects (N=267) and tested on the remaining 20% (N=65). Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant.
In the test set, 21 patients (32.3%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC)=0.87 and four-year cognitive decline was R=0.17. The performance was significantly improved for both outcomes when adding hippocampal volume (AUC=0.91, R=0.26, p-values <0.05) or FreeSurfer brain regions (AUC=0.90, R=0.27, p-values <0.05). Conversely, the DL model did not show any significant difference from the clinical data model (AUC=0.86, R=0.13). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included.
The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
预测主观认知下降(SCD)或轻度认知障碍(MCI)个体未来与阿尔茨海默病(AD)相关的认知衰退是医疗保健领域的一项重要任务。磁共振成像(MRI)测量的脑结构成像在进行此类预测时可能会有所帮助。与使用预定义脑区相比,在深度学习(DL)模型中使用全脑图像是否能提高MRI的预测性能尚不清楚。
纳入了瑞典BioFINDER-1研究中的332名SCD/MCI个体。目标是预测四年内SCD/MCI向AD痴呆的纵向进展以及简易精神状态检查表(MMSE)的变化。使用不同的预测指标评估了四个模型:1)仅临床数据,包括人口统计学、认知测试和载脂蛋白E4(ApoE4)状态;2)临床数据加海马体积;3)临床数据加使用FreeSurfer软件提取的所有区域MRI灰质体积(N = 68);4)一个DL模型,使用MRI图像、雅可比行列式图像和基线认知作为输入,通过多任务学习进行训练。模型在80%的受试者(N = 267)上开发,并在其余20%(N = 65)上进行测试。使用曼-惠特尼U检验确定性能上的统计学显著差异,p值小于0.05被认为具有显著性。
在测试集中,21名患者(32.3%)进展为AD痴呆。临床数据模型预测进展为AD痴呆的性能为曲线下面积(AUC)= 0.87,四年认知衰退为R = 0.17。添加海马体积(AUC = 0.91,R = 0.26,p值<0.05)或FreeSurfer脑区(AUC = 0.90,R = 0.27,p值<0.05)时,两个结果的性能均显著提高。相反,DL模型与临床数据模型没有显示出任何显著差异(AUC = 0.86,R = 0.13)。敏感性分析表明,雅可比行列式图像比MRI图像信息更丰富,但当两者都包含时性能达到最大化。
与具有单个预定义脑区的回归模型相比,DL模型在预测AD临床疾病进展方面没有显著改善。