Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Radical Imaging, Boston, MA, USA.
Nat Commun. 2023 Mar 22;14(1):1572. doi: 10.1038/s41467-023-37224-2.
The exchange of large and complex slide microscopy imaging data in biomedical research and pathology practice is impeded by a lack of data standardization and interoperability, which is detrimental to the reproducibility of scientific findings and clinical integration of technological innovations. We introduce Slim, an open-source, web-based slide microscopy viewer that implements the internationally accepted Digital Imaging and Communications in Medicine (DICOM) standard to achieve interoperability with a multitude of existing medical imaging systems. We showcase the capabilities of Slim as the slide microscopy viewer of the NCI Imaging Data Commons and demonstrate how the viewer enables interactive visualization of traditional brightfield microscopy and highly-multiplexed immunofluorescence microscopy images from The Cancer Genome Atlas and Human Tissue Atlas Network, respectively, using standard DICOMweb services. We further show how Slim enables the collection of standardized image annotations for the development or validation of machine learning models and the visual interpretation of model inference results in the form of segmentation masks, spatial heat maps, or image-derived measurements.
在生物医学研究和病理学实践中,由于缺乏数据标准化和互操作性,大型复杂的幻灯片显微镜成像数据的交换受到阻碍,这不利于科学发现的可重复性和技术创新的临床整合。我们引入了 Slim,这是一个开源的基于网络的幻灯片显微镜查看器,它实现了国际上接受的数字成像和通信在医学(DICOM)标准,以实现与众多现有的医学成像系统的互操作性。我们展示了 Slim 作为 NCI 成像数据公共领域的幻灯片显微镜查看器的功能,并展示了如何使用标准的 DICOMweb 服务,分别实现对传统明场显微镜和高度多重免疫荧光显微镜图像的交互式可视化,这些图像分别来自癌症基因组图谱和人体组织图谱网络。我们进一步展示了 Slim 如何支持收集标准化的图像注释,用于开发或验证机器学习模型,以及以分割掩模、空间热图或图像衍生测量的形式可视化解释模型推断结果。