Suppr超能文献

通过控制光子化学势实现近场光子冷却。

Near-field photonic cooling through control of the chemical potential of photons.

作者信息

Zhu Linxiao, Fiorino Anthony, Thompson Dakotah, Mittapally Rohith, Meyhofer Edgar, Reddy Pramod

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nature. 2019 Feb;566(7743):239-244. doi: 10.1038/s41586-019-0918-8. Epub 2019 Feb 13.

Abstract

Photonic cooling of matter has enabled both access to unexplored states of matter, such as Bose-Einstein condensates, and novel approaches to solid-state refrigeration. Critical to these photonic cooling approaches is the use of low-entropy coherent radiation from lasers, which makes the cooling process thermodynamically feasible. Recent theoretical work has suggested that photonic solid-state cooling may be accomplished by tuning the chemical potential of photons without using coherent laser radiation, but such cooling has not been experimentally realized. Here we report an experimental demonstration of photonic cooling without laser light using a custom-fabricated nanocalorimetric device and a photodiode. We show that when they are in each other's near-field-that is, when the size of the vacuum gap between the planar surfaces of the calorimetric device and a reverse-biased photodiode is reduced to tens of nanometres-solid-state cooling of the calorimetric device can be accomplished via a combination of photon tunnelling, which enhances the transport of photons across nanoscale gaps, and suppression of photon emission from the photodiode due to a change in the chemical potential of the photons under an applied reverse bias. This demonstration of active nanophotonic cooling-without the use of coherent laser radiation-lays the experimental foundation for systematic exploration of nanoscale photonics and optoelectronics for solid-state refrigeration and on-chip device cooling.

摘要

物质的光子冷却既能够实现对诸如玻色-爱因斯坦凝聚态等未被探索的物质状态的研究,也能为固态制冷提供新方法。这些光子冷却方法的关键在于使用来自激光的低熵相干辐射,这使得冷却过程在热力学上可行。最近的理论研究表明,光子固态冷却可以通过调节光子的化学势来实现,而无需使用相干激光辐射,但这种冷却尚未在实验中实现。在此,我们报告了一项利用定制的纳米量热装置和光电二极管进行无激光光子冷却的实验演示。我们表明,当量热装置和平反向偏置的光电二极管的平面表面之间的真空间隙尺寸减小到几十纳米时,即当它们处于彼此的近场中时,量热装置的固态冷却可以通过光子隧穿(这增强了光子在纳米级间隙中的传输)以及由于施加反向偏置时光子化学势的变化而抑制光电二极管的光子发射的组合来实现。这种无需使用相干激光辐射的主动纳米光子冷却演示为系统探索用于固态制冷和片上器件冷却的纳米尺度光子学和光电子学奠定了实验基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验