Bhatt Gaurang R, Zhao Bo, Roberts Samantha, Datta Ipshita, Mohanty Aseema, Lin Tong, Hartmann Jean-Michel, St-Gelais Raphael, Fan Shanhui, Lipson Michal
Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2020 May 21;11(1):2545. doi: 10.1038/s41467-020-16197-6.
Energy transferred via thermal radiation between two surfaces separated by nanometer distances can be much larger than the blackbody limit. However, realizing a scalable platform that utilizes this near-field energy exchange mechanism to generate electricity remains a challenge. Here, we present a fully integrated, reconfigurable and scalable platform operating in the near-field regime that performs controlled heat extraction and energy recycling. Our platform relies on an integrated nano-electromechanical system that enables precise positioning of a thermal emitter within nanometer distances from a room-temperature germanium photodetector to form a thermo-photovoltaic cell. We demonstrate over an order of magnitude enhancement of power generation (P ~ 1.25 μWcm) in our thermo-photovoltaic cell by actively tuning the gap between a hot-emitter (T ~ 880 K) and the cold photodetector (T ~ 300 K) from ~ 500 nm down to ~ 100 nm. Our nano-electromechanical system consumes negligible tuning power (P/P ~ 10) and relies on scalable silicon-based process technologies.
在相距纳米距离的两个表面之间通过热辐射传递的能量可能远大于黑体极限。然而,实现一个利用这种近场能量交换机制来发电的可扩展平台仍然是一个挑战。在此,我们展示了一个在近场区域运行的完全集成、可重构且可扩展的平台,该平台能进行可控的热提取和能量回收。我们的平台依赖于一个集成的纳米机电系统,该系统能够将热发射器精确地定位在距室温锗光电探测器纳米距离内,以形成一个热光伏电池。通过将热发射器(T ~ 880 K)和冷光电探测器(T ~ 300 K)之间的间隙从约500纳米主动调节至约100纳米,我们在热光伏电池中实现了发电功率(P ~ 1.25 μW/cm)超过一个数量级的增强。我们的纳米机电系统消耗的调节功率可忽略不计(P/P ~ 10),并且依赖于可扩展的硅基工艺技术。