Suppr超能文献

帕金森病各疾病阶段新兴神经影像学生物标志物的研究进展:综述

Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review.

机构信息

Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville.

Paris Brain Institute, Centre de NeuroImagerie de Recherche, INSERM 1127, CNRS 7225, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.

出版信息

JAMA Neurol. 2021 Oct 1;78(10):1262-1272. doi: 10.1001/jamaneurol.2021.1312.

Abstract

IMPORTANCE

Imaging biomarkers in Parkinson disease (PD) are increasingly important for monitoring progression in clinical trials and also have the potential to improve clinical care and management. This Review addresses a critical need to make clear the temporal relevance for diagnostic and progression imaging biomarkers to be used by clinicians and researchers over the clinical course of PD. Magnetic resonance imaging (diffusion imaging, neuromelanin-sensitive imaging, iron-sensitive imaging, T1-weighted imaging), positron emission tomography/single-photon emission computed tomography dopaminergic, serotonergic, and cholinergic imaging as well as metabolic and cerebral blood flow network neuroimaging biomarkers in the preclinical, prodromal, early, and moderate to late stages are characterized.

OBSERVATIONS

If a clinical trial is being carried out in the preclinical and prodromal stages, potentially useful disease-state biomarkers include dopaminergic imaging of the striatum; metabolic imaging; free-water, neuromelanin-sensitive, and iron-sensitive imaging in the substantia nigra; and T1-weighted structural magnetic resonance imaging. Disease-state biomarkers that can distinguish atypical parkinsonisms are metabolic imaging, free-water imaging, and T1-weighted imaging; dopaminergic imaging and other molecular imaging track progression in prodromal patients, whereas other established progression biomarkers need to be evaluated in prodromal cohorts. Progression in early-stage PD can be monitored using dopaminergic imaging in the striatum, metabolic imaging, and free-water and neuromelanin-sensitive imaging in the posterior substantia nigra. Progression in patients with moderate to late-stage PD can be monitored using free-water imaging in the anterior substantia nigra, R2* of substantia nigra, and metabolic imaging. Cortical thickness and gyrification might also be useful markers or predictors of progression. Dopaminergic imaging and free-water imaging detect progression over 1 year, whereas other modalities detect progression over 18 months or longer. The reliability of progression biomarkers varies with disease stage, whereas disease-state biomarkers are relatively consistent in individuals with preclinical, prodromal, early, and moderate to late-stage PD.

CONCLUSIONS AND RELEVANCE

Imaging biomarkers for various stages of PD are readily available to be used as outcome measures in clinical trials and are potentially useful in multimodal combination with routine clinical assessment. This Review provides a critically important template for considering disease stage when implementing diagnostic and progression biomarkers in both clinical trials and clinical care settings.

摘要

重要性

成像生物标志物在帕金森病(PD)中越来越重要,可用于监测临床试验中的进展,也有可能改善临床护理和管理。本综述旨在明确诊断和进展成像生物标志物在 PD 临床病程中的时间相关性,这是临床医生和研究人员的迫切需求。本文介绍了在临床前、前驱期、早期和中晚期,磁共振成像(扩散成像、神经黑色素敏感成像、铁敏感成像、T1 加权成像)、正电子发射断层扫描/单光子发射计算机断层扫描多巴胺能、5-羟色胺能和胆碱能成像以及代谢和脑血流网络神经影像学生物标志物在疾病早期阶段的特点。

观察结果

如果临床试验在临床前和前驱期进行,潜在的有用疾病状态生物标志物包括纹状体的多巴胺能成像;代谢成像;黑质中的自由水、神经黑色素敏感和铁敏感成像;以及 T1 加权结构磁共振成像。可区分非典型帕金森病的疾病状态生物标志物包括代谢成像、自由水成像和 T1 加权成像;多巴胺能成像和其他分子成像可在前驱期患者中追踪进展,而其他已建立的进展生物标志物则需要在前驱期队列中进行评估。在早期 PD 患者中,可以使用纹状体的多巴胺能成像、代谢成像以及后黑质的自由水和神经黑色素敏感成像来监测进展。在中晚期 PD 患者中,可以使用前黑质的自由水成像、黑质的 R2*和代谢成像来监测进展。皮质厚度和脑回可能也是进展的有用标志物或预测指标。多巴胺能成像和自由水成像可在 1 年内检测到进展,而其他模式则可在 18 个月或更长时间内检测到进展。进展生物标志物的可靠性因疾病阶段而异,而疾病状态生物标志物在临床前、前驱期、早期和中晚期 PD 患者中相对一致。

结论和相关性

PD 各个阶段的成像生物标志物可用于临床试验中的结局测量,并且与常规临床评估相结合具有潜在的应用价值。本综述为在临床试验和临床护理环境中实施诊断和进展生物标志物时考虑疾病阶段提供了一个非常重要的模板。

相似文献

1
Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review.
JAMA Neurol. 2021 Oct 1;78(10):1262-1272. doi: 10.1001/jamaneurol.2021.1312.
2
Comparative Study of MRI Biomarkers in the Substantia Nigra to Discriminate Idiopathic Parkinson Disease.
AJNR Am J Neuroradiol. 2018 Aug;39(8):1460-1467. doi: 10.3174/ajnr.A5702. Epub 2018 Jun 28.
3
Neuroimaging in Parkinson's disease: focus on substantia nigra and nigro-striatal projection.
Curr Opin Neurol. 2017 Aug;30(4):416-426. doi: 10.1097/WCO.0000000000000463.
4
Longitudinal Progression Markers of Parkinson's Disease: Current View on Structural Imaging.
Curr Neurol Neurosci Rep. 2018 Oct 2;18(12):83. doi: 10.1007/s11910-018-0894-7.
5
Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease.
Nat Rev Neurol. 2022 Apr;18(4):203-220. doi: 10.1038/s41582-022-00618-9. Epub 2022 Feb 17.
7
Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease.
Mol Med. 2021 Sep 16;27(1):111. doi: 10.1186/s10020-021-00327-x.
8
The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease.
Brain. 2021 Nov 29;144(10):3114-3125. doi: 10.1093/brain/awab191.
9
Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes.
Front Neurol. 2020 Oct 15;11:572976. doi: 10.3389/fneur.2020.572976. eCollection 2020.
10
Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease.
J Parkinsons Dis. 2024;14(s2):S353-S365. doi: 10.3233/JPD-230385.

引用本文的文献

2
Subcortical brain volume variations in autistic individuals across the lifespan.
Mol Autism. 2025 Sep 1;16(1):46. doi: 10.1186/s13229-025-00673-1.
4
Normative trajectories of R , R *, and magnetic susceptibility in basal ganglia on healthy ageing.
Imaging Neurosci (Camb). 2025 Feb 3;3. doi: 10.1162/imag_a_00456. eCollection 2025.
5
GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease.
Graphs Biomed Image Anal (2024). 2025;15182:57-68. doi: 10.1007/978-3-031-83243-7_6. Epub 2025 Mar 1.
6
A multi-modal study on cerebrovascular dysfunction in cognitive decline of de novo Parkinson's disease.
Neuroimage Clin. 2025 Jul 3;48:103836. doi: 10.1016/j.nicl.2025.103836.
7
Increased plasma GPNMB levels in patients with parkinson's disease and cognitive impairment.
Sci Rep. 2025 Jul 1;15(1):20684. doi: 10.1038/s41598-025-07415-6.
8
Enhancing 3D dopamine transporter imaging as a biomarker for Parkinson's disease via self-supervised learning with diffusion models.
Cell Rep Med. 2025 Jul 15;6(7):102207. doi: 10.1016/j.xcrm.2025.102207. Epub 2025 Jun 27.
9
Enhancing Attention Network Spatiotemporal Dynamics for Motor Rehabilitation in Parkinson's Disease.
Cyborg Bionic Syst. 2025 Jun 19;6:0293. doi: 10.34133/cbsystems.0293. eCollection 2025.
10
Potential cerebrospinal fluid metabolomic biomarkers and early prediction model for Parkinson's disease.
Front Aging Neurosci. 2025 May 30;17:1582362. doi: 10.3389/fnagi.2025.1582362. eCollection 2025.

本文引用的文献

1
Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder.
Brain. 2021 Jun 22;144(5):1488-1497. doi: 10.1093/brain/awab039.
2
Longitudinal Changes in Neuromelanin MRI Signal in Parkinson's Disease: A Progression Marker.
Mov Disord. 2021 Jul;36(7):1592-1602. doi: 10.1002/mds.28531. Epub 2021 Mar 10.
3
Cholinergic Denervation Patterns Across Cognitive Domains in Parkinson's Disease.
Mov Disord. 2021 Mar;36(3):642-650. doi: 10.1002/mds.28360. Epub 2020 Nov 2.
4
Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting.
Mov Disord. 2021 Feb;36(2):460-470. doi: 10.1002/mds.28348. Epub 2020 Nov 2.
5
Serotonergic System Impacts Levodopa Response in Early Parkinson's and Future Risk of Dyskinesia.
Mov Disord. 2021 Feb;36(2):389-397. doi: 10.1002/mds.28340. Epub 2020 Oct 22.
6
Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson's disease.
Brain. 2020 Sep 1;143(9):2757-2770. doi: 10.1093/brain/awaa216.
7
α-Synuclein Induces Progressive Changes in Brain Microstructure and Sensory-Evoked Brain Function That Precedes Locomotor Decline.
J Neurosci. 2020 Aug 19;40(34):6649-6659. doi: 10.1523/JNEUROSCI.0189-20.2020. Epub 2020 Jul 15.
8
Imaging dopamine function and microglia in asymptomatic LRRK2 mutation carriers.
J Neurol. 2020 Aug;267(8):2296-2300. doi: 10.1007/s00415-020-09830-3. Epub 2020 Apr 21.
9
Development and Validation of the Automated Imaging Differentiation in Parkinsonism (AID-P): A Multi-Site Machine Learning Study.
Lancet Digit Health. 2019 Sep;1(5):e222-e231. doi: 10.1016/s2589-7500(19)30105-0. Epub 2019 Aug 27.
10
Left-hemispheric predominance of nigrostriatal deficit in isolated REM sleep behavior disorder.
Neurology. 2020 Apr 14;94(15):e1605-e1613. doi: 10.1212/WNL.0000000000009246. Epub 2020 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验