Suppr超能文献

BrainNPT:用于脑网络分类的预训练 Transformer 网络。

BrainNPT: Pre-Training Transformer Networks for Brain Network Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2727-2736. doi: 10.1109/TNSRE.2024.3434343. Epub 2024 Aug 2.

Abstract

Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, such as natural language processing. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged token as a classification embedding vector for the Transformer model to effectively capture the representation of brain networks. Second, we proposed a pre-training framework for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain functional networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies and the data augmentation methods, analyzed the influence of the parameters of the model, and explained the trained model.

摘要

深度学习方法在过去几年中在脑影像分析中取得了快速进展,但它们通常受到有限的标记数据的限制。在许多领域,如自然语言处理,使用未标记数据进行预训练的模型在特征学习方面表现出了很有前景的改进。然而,这种技术在脑网络分析中还没有得到充分的探索。在本文中,我们专注于使用 Transformer 网络的预训练方法,利用现有的未标记数据进行脑功能网络分类。首先,我们提出了一种基于 Transformer 的神经网络,名为 BrainNPT,用于脑功能网络分类。该方法利用 标记作为 Transformer 模型的分类嵌入向量,有效地捕捉脑网络的表示。其次,我们提出了一个预训练框架,用于 BrainNPT 模型,以利用未标记的脑网络数据学习脑功能网络的结构信息。分类实验的结果表明,未经预训练的 BrainNPT 模型达到了与最先进模型相当的最佳性能,而经过预训练的 BrainNPT 模型则明显优于最先进模型。预训练的 BrainNPT 模型比未经预训练的模型提高了 8.75%的准确率。我们进一步比较了预训练策略和数据增强方法,分析了模型参数的影响,并对训练后的模型进行了解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验