文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的牙周炎感染下颌骨中独特的 miRomics 表达谱。

Unique miRomics Expression Profiles in -Infected Mandibles during Periodontitis Using Machine Learning.

机构信息

Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.

Department of Community Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.

出版信息

Int J Mol Sci. 2023 Nov 16;24(22):16393. doi: 10.3390/ijms242216393.


DOI:10.3390/ijms242216393
PMID:38003583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10671577/
Abstract

is a subgingival periodontal bacterium constituting the subgingival pathogenic polymicrobial milieu during periodontitis (PD). miRNAs play a pivotal role in maintaining periodontal tissue homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. The aim of this study was to characterize the global microRNAs (miRNA, miR) expression kinetics in 8- and 16-week-old -infected C57BL/6J mouse mandibles and to identify the miRNA bacterial biomarkers of disease process at specific time points. We examined the differential expression (DE) of miRNAs in mouse mandibles ( = 10) using high-throughput NanoString nCounter miRNA expression panels, which provided significant advantages over specific candidate miRNA or pathway analyses. All the -infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, along with a significant increase in alveolar bone resorption (ABR) ( < 0.0001). We performed a NanoString analysis of specific miRNA signatures, miRNA target pathways, and gene network analysis. A total of 115 miRNAs were DE in the mandible tissue during 8 and 16 weeks The infection, compared with sham infection, and the majority (99) of DE miRNAs were downregulated. nCounter miRNA expression kinetics identified 67 downregulated miRNAs (e.g., miR-375, miR-200c, miR-200b, miR-34b-5p, miR-141) during an 8-week infection, whereas 16 upregulated miRNAs (e.g., miR-1902, miR-let-7c, miR-146a) and 32 downregulated miRNAs (e.g., miR-2135, miR-720, miR-376c) were identified during a 16-week infection. Two miRNAs, miR-375 and miR-200c, were highly downregulated with >twofold change during an 8-week infection. Six miRNAs in the 8-week infection (miR-200b, miR-141, miR-205, miR-423-3p, miR-141-3p, miR-34a-5p) and two miRNAs in the 16-week infection (miR-27a-3p, miR-15a-5p) that were downregulated have also been reported in the gingival tissue and saliva of periodontitis patients. This preclinical in vivo study identified -specific miRNAs (miR-let-7c, miR-210, miR-146a, miR-423-5p, miR-24, miR-218, miR-26b, miR-23a-3p) and these miRs have also been reported in the gingival tissues and saliva of periodontitis patients. Further, several DE miRNAs that are significantly upregulated (e.g., miR-101b, miR-218, miR-127, miR-24) are also associated with many systemic diseases such as atherosclerosis, Alzheimer's disease, rheumatoid arthritis, osteoarthritis, diabetes, obesity, and several cancers. In addition to DE analysis, we utilized the XGBoost (eXtreme Gradient boost) and Random Forest machine learning (ML) algorithms to assess the impact that the number of miRNA copies has on predicting whether a mouse is infected. XGBoost found that miR-339-5p was most predictive for mice infection at 16 weeks. miR-592-5p was most predictive for mice infection at 8 weeks and also when the 8-week and 16-week results were grouped together. Random Forest predicted miR-592 as most predictive at 8 weeks as well as the combined 8-week and 16-week results, but miR-423-5p was most predictive at 16 weeks. In conclusion, the expression levels of miR-375 and miR-200c family differed significantly during disease process, and these miRNAs establishes a link between and development of periodontitis genesis, offering new insights regarding the pathobiology of this bacterium.

摘要

是一种龈下牙周致病菌,构成牙周炎(PD)期间龈下致病性多微生物环境。miRNAs 在维持牙周组织的转录、转录后和表观遗传水平的组织内稳态方面发挥着关键作用。本研究的目的是描述在 8 周和 16 周感染的 C57BL/6J 小鼠下颌骨中的全局 microRNAs(miRNA,miR)表达动力学,并确定疾病过程特定时间点的细菌生物标志物。我们使用高通量 NanoString nCounter miRNA 表达谱分析了小鼠下颌骨(n = 10)中的差异表达(DE)miRNAs,这与特定候选 miRNA 或途径分析相比具有显著优势。在两个特定时间点,所有感染的小鼠均显示牙龈表面有细菌定植(100%),同时牙槽骨吸收(ABR)显著增加(<0.0001)。我们进行了特定 miRNA 特征、miRNA 靶途径和基因网络分析的 NanoString 分析。与假感染相比,在 8 和 16 周的感染中,下颌骨组织中有 115 个 miRNA 发生了 DE,其中大多数(99%)DE miRNA 下调。nCounter miRNA 表达动力学在 8 周感染期间确定了 67 个下调 miRNA(例如 miR-375、miR-200c、miR-200b、miR-34b-5p、miR-141),而在 16 周感染期间,有 16 个上调 miRNA(例如 miR-1902、miR-let-7c、miR-146a)和 32 个下调 miRNA(例如 miR-2135、miR-720、miR-376c)。两个 miRNA,miR-375 和 miR-200c,在 8 周感染期间下调超过两倍。在 8 周感染中有 6 个 miRNA(miR-200b、miR-141、miR-205、miR-423-3p、miR-141-3p、miR-34a-5p)和在 16 周感染中有 2 个 miRNA(miR-27a-3p、miR-15a-5p)下调,这些 miRNA 也在牙周炎患者的牙龈组织和唾液中报道过。这项临床前体内研究鉴定了与牙周炎相关的特异性 miRNA(miR-let-7c、miR-210、miR-146a、miR-423-5p、miR-24、miR-218、miR-26b、miR-23a-3p),并且这些 miRs 也在牙周炎患者的牙龈组织和唾液中报道过。此外,一些显著上调的 DE miRNA(例如 miR-101b、miR-218、miR-127、miR-24)也与许多系统性疾病有关,如动脉粥样硬化、阿尔茨海默病、类风湿性关节炎、骨关节炎、糖尿病、肥胖症和几种癌症。除了 DE 分析,我们还利用 XGBoost(极端梯度提升)和随机森林机器学习(ML)算法来评估 miRNA 拷贝数对预测小鼠感染的影响。XGBoost 发现 miR-339-5p 对 16 周的小鼠感染最具预测性。miR-592-5p 对 8 周的小鼠感染最具预测性,也对 8 周和 16 周的结果进行分组时最具预测性。随机森林预测 miR-592 在 8 周时以及 8 周和 16 周的合并结果时最具预测性,但 miR-423-5p 在 16 周时最具预测性。总之,miR-375 和 miR-200c 家族在疾病过程中的表达水平差异显著,这些 miRNA 建立了与牙周炎发生的之间的联系,为该细菌的病理生物学提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/d96c711c1e3d/ijms-24-16393-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/2db2e63a20c8/ijms-24-16393-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/8fd85367664c/ijms-24-16393-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/5b6475e744af/ijms-24-16393-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/0db870ef6422/ijms-24-16393-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/d96c711c1e3d/ijms-24-16393-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/2db2e63a20c8/ijms-24-16393-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/8fd85367664c/ijms-24-16393-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/5b6475e744af/ijms-24-16393-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/0db870ef6422/ijms-24-16393-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/10671577/d96c711c1e3d/ijms-24-16393-g005.jpg

相似文献

[1]
Unique miRomics Expression Profiles in -Infected Mandibles during Periodontitis Using Machine Learning.

Int J Mol Sci. 2023-11-16

[2]
Oral Spirochete Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis.

Int J Mol Sci. 2023-7-28

[3]
Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics.

Int J Mol Sci. 2024-6-5

[4]
Specific microRNA Signature Kinetics in -Induced Periodontitis.

Int J Mol Sci. 2023-1-24

[5]
Global Noncoding microRNA Profiling in Mice Infected with Partial Human Mouth Microbes (PAHMM) Using an Ecological Time-Sequential Polybacterial Periodontal Infection (ETSPPI) Model Reveals Sex-Specific Differential microRNA Expression.

Int J Mol Sci. 2022-5-4

[6]
Gingival Tissue MiRNA Expression Profiling and an Analysis of Periodontitis-Specific Circulating MiRNAs.

Int J Mol Sci. 2023-7-26

[7]
SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128.

Viruses. 2023-2-24

[8]
Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk.

J Periodontal Res. 2023-2

[9]
Diagnostic potential of miR-200 family members in gingival crevicular fluid for chronic periodontitis: correlation with clinical parameters and therapeutic implications.

BMC Oral Health. 2023-7-31

[10]
Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease.

Infect Immun. 2011-1-24

引用本文的文献

[1]
Exploring the complex interplay between oral infection, periodontitis, and robust microRNA induction, including multiple known oncogenic miRNAs.

mSystems. 2025-6-25

[2]
Correlation between HbA1c Levels and Periodontal Bacterial Load in Diabetic Patients with Fixed Retainers.

Curr Health Sci J. 2024

[3]
Comparison of light gradient boosting and logistic regression for interactomic hub genes in and -induced periodontitis with Alzheimer's disease.

Front Oral Health. 2025-3-4

[4]
Periodontal Tissue Homoeostasis, Immunity, the Red Complex Pathogens, and Dysbiosis: Unraveling the microRNA Effect.

Microrna. 2025

[5]
Based on network pharmacology and molecular docking to explore the potential mechanism of shikonin in periodontitis.

BMC Oral Health. 2024-7-24

[6]
Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics.

Int J Mol Sci. 2024-6-5

本文引用的文献

[1]
microRNA-130b-3p Attenuates Septic Cardiomyopathy by Regulating the AMPK/mTOR Signaling Pathways and Directly Targeting ACSL4 against Ferroptosis.

Int J Biol Sci. 2023

[2]
Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model.

Front Oncol. 2023-8-3

[3]
Oral Spirochete Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis.

Int J Mol Sci. 2023-7-28

[4]
Text mining-based identification of promising miRNA biomarkers for diabetes mellitus.

Front Endocrinol (Lausanne). 2023

[5]
NEAT1/microRNA 339-5p/SPI1 Axis Feedback Loop Contributes to Osteogenic Differentiation in Acute Suppurative Osteomyelitis in Children.

J Inflamm Res. 2023-6-29

[6]
The Role of Thyroid Hormone Synthesis Gene-Related miRNAs Profiling in Structural and Functional Changes of The Thyroid Gland Induced by Excess Iodine.

Biol Trace Elem Res. 2024-2

[7]
A Mixture Method for Robust Detection HCV Early Diagnosis Biomarker with ML Approach and Molecular Docking.

Int J Mol Sci. 2023-4-13

[8]
Oral metagenomes from Native American Ancestors reveal distinct microbial lineages in the pre-contact era.

Am J Biol Anthropol. 2023-12

[9]
The Role of MicroRNAs in Predicting the Neurological Outcome of Patients with Subarachnoid Hemorrhage: A Meta-analysis.

Cell Mol Neurobiol. 2023-8

[10]
MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis.

BMC Cardiovasc Disord. 2023-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索