文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery.

作者信息

Illanes-Bordomás Carlos, Landin Mariana, García-González Carlos A

机构信息

AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

出版信息

Pharmaceutics. 2023 Nov 17;15(11):2639. doi: 10.3390/pharmaceutics15112639.


DOI:10.3390/pharmaceutics15112639
PMID:38004617
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10674668/
Abstract

Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/b0a10014665a/pharmaceutics-15-02639-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/ab4118b39982/pharmaceutics-15-02639-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/557c0c8066ea/pharmaceutics-15-02639-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/eb31c77ab64a/pharmaceutics-15-02639-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e76b58b5a476/pharmaceutics-15-02639-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/c002d0eb8927/pharmaceutics-15-02639-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e7c5b2040429/pharmaceutics-15-02639-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/b5e68379fb3e/pharmaceutics-15-02639-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e0685f7c934e/pharmaceutics-15-02639-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/da618478df52/pharmaceutics-15-02639-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/bcbdd3bd8dca/pharmaceutics-15-02639-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/40a5e93f3008/pharmaceutics-15-02639-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/5fd122bc1c09/pharmaceutics-15-02639-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/b0a10014665a/pharmaceutics-15-02639-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/ab4118b39982/pharmaceutics-15-02639-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/557c0c8066ea/pharmaceutics-15-02639-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/eb31c77ab64a/pharmaceutics-15-02639-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e76b58b5a476/pharmaceutics-15-02639-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/c002d0eb8927/pharmaceutics-15-02639-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e7c5b2040429/pharmaceutics-15-02639-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/b5e68379fb3e/pharmaceutics-15-02639-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/e0685f7c934e/pharmaceutics-15-02639-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/da618478df52/pharmaceutics-15-02639-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/bcbdd3bd8dca/pharmaceutics-15-02639-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/40a5e93f3008/pharmaceutics-15-02639-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/5fd122bc1c09/pharmaceutics-15-02639-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc37/10674668/b0a10014665a/pharmaceutics-15-02639-g013.jpg

相似文献

[1]
Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery.

Pharmaceutics. 2023-11-17

[2]
Application of protein/polysaccharide aerogels in drug delivery system: A review.

Int J Biol Macromol. 2023-8-30

[3]
Pharmaceutical approaches to colon targeted drug delivery systems.

J Pharm Pharm Sci. 2003

[4]
Research progress of colon-targeted oral hydrogel system based on natural polysaccharides.

Int J Pharm. 2023-8-25

[5]
Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook.

Polymers (Basel). 2021-4-20

[6]
Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting.

Drug Discov Today. 2023-7

[7]
Polysaccharides: a targeting strategy for colonic drug delivery.

Expert Opin Drug Deliv. 2011-4-21

[8]
Polysaccharide-based aerogel microspheres for oral drug delivery.

Carbohydr Polym. 2014-10-30

[9]
Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon.

J Pharm Pharm Sci. 2007

[10]
Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

J Drug Target. 2016-8

引用本文的文献

[1]
Alginate/k-Carrageenan Interpenetrated Biopolymeric Aerogels for Nutraceutical Drug Delivery.

Gels. 2025-5-27

[2]
Rifampicin adsorption and release study using Santa Barbara amorphous-16 modified Al (SBA-16-Al) for a drug delivery system.

RSC Adv. 2024-3-1

本文引用的文献

[1]
The effect of synthesis conditions and process parameters on aerogel properties.

Front Chem. 2023-10-23

[2]
A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture.

Carbohydr Polym. 2023-12-15

[3]
Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome.

Ibrain. 2022-9-8

[4]
Polysaccharides gums in drug delivery systems: A review.

Int J Biol Macromol. 2023-12-31

[5]
Research progress of colon-targeted oral hydrogel system based on natural polysaccharides.

Int J Pharm. 2023-8-25

[6]
Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds.

Gels. 2023-6-16

[7]
Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents.

Pharmaceutics. 2023-1-25

[8]
Pectin-based aerogel particles for drug delivery: Effect of pectin composition on aerogel structure and release properties.

Carbohydr Polym. 2023-4-15

[9]
Colonic budesonide delivery by multistimuli alginate/Eudragit® FS 30D/inulin-based microspheres as a paediatric formulation.

Carbohydr Polym. 2023-2-15

[10]
Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review.

Int J Biol Macromol. 2023-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索