Suppr超能文献

新型大麻基建筑材料的环境生命周期评估

Environmental Life Cycle Assessment of a Novel Hemp-Based Building Material.

作者信息

Rivas-Aybar Daniela, John Michele, Biswas Wahidul

机构信息

Sustainable Engineering Group, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia.

出版信息

Materials (Basel). 2023 Nov 17;16(22):7208. doi: 10.3390/ma16227208.

Abstract

The global construction sector contributes a significant share of total greenhouse gas (GHG) emissions. In Australia, infrastructure activity alone generates 18% of the GHG emissions. The use of low-embodied carbon building materials is crucial to decarbonise the construction sector and fulfil national and international climate goals. Industrial hemp ( L.) is a promising feedstock for low-carbon construction materials because of its carbon sequestration capacity, fast-growing cycles, and technical functionality comparable to traditional materials. This study utilised the life cycle assessment (LCA) guideline ISO 14040:2006 to estimate the carbon footprint (CF) of hemp-based building materials in Western Australia capturing region-specific variations in terms of inputs, soil, productivity, and energy mix. The functional unit was 1 m of a hemp-based board, and the system boundary was cradle-to-gate, i.e., pre-farm, on-farm, and post-farm activities. The CF of 1 m of hemp-based board was estimated to be -2.302 kg CO eq. Electricity from the public grid for bio-based binder production during the post-farm stage was the main contributor to total CO eq emissions (26%), followed by urea production (14%) during the pre-farm stage. Overall, the use of electricity from the public grid during the post-farm stage accounted for 45% of total emissions. Sensitivity analysis showed that the CF of hemp-based boards was highly sensitive to the source of energy; i.e., total replacement of the public grid by solar power decreased the CF by 164% (-2.30 to -6.07 kg CO eq). The results suggested that hemp-based boards exhibit lower embodied GHG emissions compared to traditional materials, such as gypsum plasterboards.

摘要

全球建筑业在温室气体(GHG)排放总量中占相当大的比例。在澳大利亚,仅基础设施活动就产生了18%的温室气体排放。使用低碳建材对于建筑业脱碳以及实现国家和国际气候目标至关重要。工业大麻(L.)因其碳固存能力、快速生长周期以及与传统材料相当的技术功能,是一种很有前景的低碳建筑材料原料。本研究利用生命周期评估(LCA)指南ISO 14040:2006来估算西澳大利亚州大麻基建筑材料的碳足迹(CF),涵盖了投入、土壤、生产力和能源结构等特定区域差异。功能单位为1立方米大麻板,系统边界为从摇篮到大门,即农场前、农场内和农场后活动。1立方米大麻板的碳足迹估计为-2.302千克二氧化碳当量。农场后阶段用于生物基粘合剂生产的来自公共电网的电力是总二氧化碳当量排放的主要贡献者(26%),其次是农场前阶段的尿素生产(14%)。总体而言,农场后阶段使用公共电网的电力占总排放量的45%。敏感性分析表明,大麻板的碳足迹对能源来源高度敏感;即完全用太阳能取代公共电网可使碳足迹降低164%(从-2.30降至-6.07千克二氧化碳当量)。结果表明,与石膏板等传统材料相比,大麻板的隐含温室气体排放量更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cecc/10672900/690b2f334609/materials-16-07208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验