School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Biochemistry, Departments of Laboratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK.
J Nutr. 2024 Jul;154(7):2076-2086. doi: 10.1016/j.tjnut.2023.10.030. Epub 2023 Nov 24.
Resistance exercise (RE) stimulates collagen synthesis in skeletal muscle and tendon but there is limited and equivocal evidence regarding an effect of collagen supplementation and exercise on collagen synthesis. Furthermore, it is not known if a dose-response exists regarding the effect of hydrolyzed collagen (HC) ingestion and RE on collagen synthesis.
To determine the HC dose-response effect on collagen synthesis after high-intensity RE in resistance-trained young men.
Using a double-blind, randomized crossover design, 10 resistance-trained males (age: 26 ± 3 y; height: 1.77 ± 0.04 m; mass: 79.7 ± 7.0 kg) ingested 0 g, 15 g, or 30 g HC with 50 mg vitamin C 1 h before performing 4 sets' barbell back squat RE at 10-repetition maximum load, after which they rested for 6 h. Blood samples were collected throughout each of the 3 interventions to analyze procollagen type Ⅰ N-terminal propeptide (PINP) and β-isomerized C-terminal telopeptide of type I collagen (β-CTX) concentration, and the concentration of 18 collagen amino acids.
The serum PINP concentration × time area under the curve (AUC) was greater for 30 g (267 ± 79 μg·L·h) than for 15 g (235 ± 70 μg·L·h, P = 0.013) and 0 g HC (219 ± 88 μg·L·h, P = 0.002) but there was no difference between 0 and 15 g HC (P = 0.225). The AUCs of glycine and proline were greater for 30 g than for 15 and 0 g HC (P < 0.05). Plasma β-CTX concentration decreased from -1 to +6 h (P < 0.05), with no differences between interventions.
Ingesting 30 g HC before high-intensity RE augments whole-body collagen synthesis more than 15 g and 0 g HC in resistance-trained young males.
抗阻运动(RE)可刺激骨骼肌和肌腱中的胶原合成,但关于胶原补充剂和运动对胶原合成的影响,目前的证据有限且存在争议。此外,关于水解胶原(HC)摄入和 RE 对胶原合成的影响是否存在剂量反应,目前尚不清楚。
确定高强度 RE 后 HC 剂量对年轻抗阻训练男性胶原合成的影响。
采用双盲、随机交叉设计,10 名抗阻训练男性(年龄:26±3 岁;身高:1.77±0.04 m;体重:79.7±7.0 kg)在进行 10 次最大重复负荷的杠铃深蹲 RE 前 1 h 分别摄入 0、15 或 30 g HC 及 50 mg 维生素 C,之后休息 6 h。在这 3 种干预措施的每个阶段都采集血样,以分析前胶原 I 型 N 端前肽(PINP)和 I 型胶原β-异构体 C 端肽(β-CTX)浓度以及 18 种胶原氨基酸的浓度。
血清 PINP 浓度×时间曲线下面积(AUC),30 g HC 组(267±79 μg·L·h)高于 15 g HC 组(235±70 μg·L·h,P=0.013)和 0 g HC 组(219±88 μg·L·h,P=0.002),但 0 和 15 g HC 组间无差异(P=0.225)。30 g HC 组的甘氨酸和脯氨酸 AUC 大于 15 和 0 g HC 组(P<0.05)。血浆 β-CTX 浓度在-1 至+6 h 时下降(P<0.05),各干预组间无差异。
在高强度 RE 前摄入 30 g HC 可比摄入 15 g 和 0 g HC 更有效地增加年轻抗阻训练男性的全身胶原合成。