Olšteins Dāgs, Nagda Gunjan, Carrad Damon J, Beznasyuk Daria V, Petersen Christian E N, Martí-Sánchez Sara, Arbiol Jordi, Jespersen Thomas S
Center For Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Nat Commun. 2023 Nov 25;14(1):7738. doi: 10.1038/s41467-023-43551-1.
Bottom-up grown nanomaterials play an integral role in the development of quantum technologies but are often challenging to characterise on large scales. Here, we harness selective area growth of semiconductor nanowires to demonstrate large-scale integrated circuits and characterisation of large numbers of quantum devices. The circuit consisted of 512 quantum devices embedded within multiplexer/demultiplexer pairs, incorporating thousands of interconnected selective area growth nanowires operating under deep cryogenic conditions. Multiplexers enable a range of new strategies in quantum device research and scaling by increasing the device count while limiting the number of connections between room-temperature control electronics and the cryogenic samples. As an example of this potential we perform a statistical characterization of large arrays of identical quantum dots thus establishing the feasibility of applying cross-bar gating strategies for efficient scaling of future selective area growth quantum circuits. More broadly, the ability to systematically characterise large numbers of devices provides new levels of statistical certainty to materials/device development.
自下而上生长的纳米材料在量子技术发展中发挥着不可或缺的作用,但通常在大规模表征方面具有挑战性。在此,我们利用半导体纳米线的选择性区域生长来展示大规模集成电路以及大量量子器件的表征。该电路由嵌入在复用器/解复用器对中的512个量子器件组成,包含数千条在深低温条件下运行的相互连接的选择性区域生长纳米线。复用器通过增加器件数量,同时限制室温控制电子设备与低温样品之间的连接数量,在量子器件研究和规模化方面实现了一系列新策略。作为这种潜力的一个例子,我们对大量相同量子点阵列进行了统计表征,从而确立了应用交叉条形门控策略以有效扩展未来选择性区域生长量子电路的可行性。更广泛地说,系统地表征大量器件的能力为材料/器件开发提供了新的统计确定性水平。