Institute of Theoretical Physics and Astrophysics, Quantum Information Technology, University of Gdańsk, Gdańsk, Poland.
Faculty of Technology, Software Engineering, Fırat University, Elazig, Turkey.
CPT Pharmacometrics Syst Pharmacol. 2024 Feb;13(2):308-316. doi: 10.1002/psp4.13085. Epub 2023 Dec 5.
Despite attempts to control the spread of human immunodeficiency virus (HIV) through the use of anti-HIV medications, the absence of an effective vaccine continues to present a significant obstacle. In addition, the development of drug resistance by HIV underscores the necessity for computational drug discovery methods to identify novel therapies. This investigation specifically focused on employing a long short-term memory (LSTM) variational autoencoder deep-learning architecture for computational drug discovery in relation to HIV. Our data set comprised simplified molecular input line entry system (SMILES)-encoded compounds, which were used to train the LSTM autoencoder. Remarkably, our model achieved a training accuracy of 91%, with a data set containing 1377 compounds. Leveraging the generative model derived from the training phase, we generated potential new drugs for combating HIV and assessed their interaction with the virus using a previously developed artificial intelligence model. Lastly, we verified the drug likeliness of our computationally generated compounds in accordance with Lipinski's rule of five. Overall, our study presents a promising approach to computational drug discovery in the ongoing battle against HIV.
尽管人们试图通过使用抗 HIV 药物来控制人类免疫缺陷病毒 (HIV) 的传播,但缺乏有效的疫苗仍然是一个重大障碍。此外,HIV 产生耐药性突出表明需要计算药物发现方法来确定新的治疗方法。本研究专门针对使用长短期记忆 (LSTM) 变分自动编码器深度学习架构进行与 HIV 相关的计算药物发现。我们的数据集由简化分子输入行输入系统 (SMILES) 编码的化合物组成,用于训练 LSTM 自动编码器。值得注意的是,我们的模型在包含 1377 种化合物的数据集上实现了 91%的训练准确性。利用训练阶段得出的生成模型,我们生成了潜在的新的抗 HIV 药物,并使用之前开发的人工智能模型评估了它们与病毒的相互作用。最后,我们根据 Lipinski 的五规则验证了我们计算生成的化合物的药物相似性。总的来说,我们的研究为与 HIV 持续斗争中的计算药物发现提供了一种很有前途的方法。