Suppr超能文献

利用微生物学数据改善呼吸道感染抗生素的使用:一项个体患者数据荟萃分析方案。

Using microbiological data to improve the use of antibiotics for respiratory tract infections: A protocol for an individual patient data meta-analysis.

机构信息

Primary Care Research Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.

Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.

出版信息

PLoS One. 2023 Nov 27;18(11):e0294845. doi: 10.1371/journal.pone.0294845. eCollection 2023.

Abstract

BACKGROUND

Resistance to antibiotics is rising and threatens future antibiotic effectiveness. 'Antibiotic targeting' ensures patients who may benefit from antibiotics receive them, while being safely withheld from those who may not. Point-of-care tests may assist with antibiotic targeting by allowing primary care clinicians to establish if symptomatic patients have a viral, bacterial, combined, or no infection. However, because organisms can be harmlessly carried, it is important to know if the presence of the virus/bacteria is related to the illness for which the patient is being assessed. One way to do this is to look for associations with more severe/prolonged symptoms and test results. Previous research to answer this question for acute respiratory tract infections has given conflicting results with studies has not having enough participants to provide statistical confidence.

AIM

To undertake a synthesis of IPD from both randomised controlled trials (RCTs) and observational cohort studies of respiratory tract infections (RTI) in order to investigate the prognostic value of microbiological data in addition to, or instead of, clinical symptoms and signs.

METHODS

A systematic search of Cochrane Central Register of Controlled Trials, Ovid Medline and Ovid Embase will be carried out for studies of acute respiratory infection in primary care settings. The outcomes of interest are duration of disease, severity of disease, repeated consultation with new/worsening illness and complications requiring hospitalisation. Authors of eligible studies will be contacted to provide anonymised individual participant data. The data will be harmonised and aggregated. Multilevel regression analysis will be conducted to determine key outcome measures for different potential pathogens and whether these offer any additional information on prognosis beyond clinical symptoms and signs.

TRIAL REGISTRATION

PROSPERO Registration number: CRD42023376769.

摘要

背景

抗生素耐药性不断上升,威胁着未来抗生素的有效性。“抗生素靶向治疗”确保了可能受益于抗生素的患者能够获得治疗,同时安全地避免了那些可能不需要抗生素的患者。即时检测可以通过让初级保健临床医生确定有症状的患者是病毒、细菌、混合或无感染,从而帮助实现抗生素靶向治疗。然而,由于生物体可能无害携带,了解病毒/细菌的存在是否与患者正在评估的疾病有关非常重要。一种方法是寻找与更严重/更长时间的症状和检测结果相关的关联。先前为急性呼吸道感染回答这个问题的研究结果存在冲突,研究参与者数量不足,无法提供统计学置信度。

目的

综合来自随机对照试验(RCT)和呼吸道感染(RTI)观察性队列研究的个体参与者数据(IPD),以调查微生物数据的预后价值,除了临床症状和体征之外,或者替代临床症状和体征。

方法

将在 Cochrane 对照试验中心注册库、Ovid Medline 和 Ovid Embase 中进行针对初级保健环境中急性呼吸道感染的系统检索。感兴趣的结局是疾病持续时间、疾病严重程度、因新/恶化疾病而重复就诊以及需要住院治疗的并发症。将联系符合条件的研究的作者,以提供匿名的个体参与者数据。将对数据进行协调和汇总。将进行多水平回归分析,以确定不同潜在病原体的关键结局指标,以及这些指标是否提供了超出临床症状和体征的预后额外信息。

试验注册

PROSPERO 注册号:CRD42023376769。

相似文献

10
Delayed antibiotics for respiratory infections.呼吸道感染的延迟抗生素治疗。
Cochrane Database Syst Rev. 2013 Apr 30(4):CD004417. doi: 10.1002/14651858.CD004417.pub4.

本文引用的文献

9
Delayed antibiotic prescriptions for respiratory infections.呼吸道感染的延迟抗生素处方
Cochrane Database Syst Rev. 2017 Sep 7;9(9):CD004417. doi: 10.1002/14651858.CD004417.pub5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验