Vu Mai-Anh T, Brown Eleanor H, Wen Michelle J, Noggle Christian A, Zhang Zicheng, Monk Kevin J, Bouabid Safa, Mroz Lydia, Graham Benjamin M, Zhuo Yizhou, Li Yulong, Otchy Timothy M, Tian Lin, Davison Ian G, Boas David A, Howe Mark W
Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA.
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
bioRxiv. 2023 Nov 17:2023.11.17.567425. doi: 10.1101/2023.11.17.567425.
Neural population dynamics relevant for behavior vary over multiple spatial and temporal scales across 3-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array and imaging approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice. We developed a semi-automated micro-CT based strategy to precisely localize positions of each optical fiber. This highly-customizable approach enables investigation of multi-scale spatial and temporal patterns of cell-type and neurotransmitter specific signals over arbitrary 3-D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum volume which revealed distinct, modality specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics through our fiber arrays enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and spatial localization of behavioral function across large circuits.
与行为相关的神经群体动力学在三维空间中跨越多个空间和时间尺度变化。当前的光学方法缺乏测量和操纵诸如纹状体等深部脑区内部和之间自然发生的大规模、分布式动力学模式所需的空间覆盖范围和分辨率。我们设计了一种新的微纤维阵列和成像方法,能够在头部固定和自由移动的小鼠中同时长期测量和光遗传学操纵超过100个目标位置的局部动力学。我们开发了一种基于半自动微型计算机断层扫描的策略来精确确定每根光纤的位置。这种高度可定制的方法能够以前所未有的空间分辨率和覆盖范围,在任意三维空间中研究细胞类型和神经递质特异性信号的多尺度空间和时间模式。我们应用这种方法解析了整个纹状体体积内快速的多巴胺释放动力学,揭示了对跨越数毫米组织的显著感觉刺激作出反应时不同的、模式特异性的时空模式。通过我们的纤维阵列进行靶向光遗传学能够在多个空间尺度上灵活控制神经信号,更好地匹配内源性信号模式,并在大型回路中对行为功能进行空间定位