Suppr超能文献

细胞定位仪(CSPOT):一种用于高度多重组织图像自动细胞定位和定量的机器学习方法。

Cell Spotter (CSPOT): A machine-learning approach to automated cell spotting and quantification of highly multiplexed tissue images.

作者信息

Nirmal Ajit J, Yapp Clarence, Santagata Sandro, Sorger Peter K

机构信息

Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA.

Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

bioRxiv. 2023 Nov 17:2023.11.15.567196. doi: 10.1101/2023.11.15.567196.

Abstract

Highly multiplexed tissue imaging and in situ spatial profiling aim to extract single-cell data from specimens containing closely packed cells of diverse morphology. This is challenging due to the difficulty of accurately assigning boundaries between cells (segmentation) and then generating per-cell staining intensities. Existing methods use gating to convert per-cell intensity data to positive and negative scores; this is a common approach in flow cytometry, but one that is problematic in imaging. In contrast, human experts identify cells in crowded environments using morphological, neighborhood, and intensity information. Here we describe a computational approach (Cell Spotter or CSPOT) that uses supervised machine learning in combination with classical segmentation to perform automated cell type calling. CSPOT is robust to artifacts that commonly afflict tissue imaging and can replace conventional gating. The end-to-end Python implementation of CSPOT can be integrated into cloud-based image processing pipelines to substantially improve the speed, accuracy, and reproducibility of single-cell spatial data.

摘要

高度多重组织成像和原位空间分析旨在从包含形态各异且紧密排列细胞的标本中提取单细胞数据。由于难以准确划分细胞之间的边界(分割)并生成每个细胞的染色强度,这一过程颇具挑战性。现有方法使用门控将每个细胞的强度数据转换为正分数和负分数;这是流式细胞术中的常用方法,但在成像中存在问题。相比之下,人类专家利用形态、邻域和强度信息在拥挤环境中识别细胞。在此,我们描述了一种计算方法(细胞识别器或CSPOT),该方法使用监督机器学习结合经典分割来进行自动细胞类型识别。CSPOT对通常困扰组织成像的伪影具有鲁棒性,并且可以取代传统的门控。CSPOT的端到端Python实现可以集成到基于云的图像处理管道中,以大幅提高单细胞空间数据的速度、准确性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d75/10680730/cef09b4c71f7/nihpp-2023.11.15.567196v1-f0007.jpg

相似文献

2
A review on deep learning applications in highly multiplexed tissue imaging data analysis.
Front Bioinform. 2023 Jul 26;3:1159381. doi: 10.3389/fbinf.2023.1159381. eCollection 2023.
3
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
4
An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
Methods. 2017 Jan 1;112:201-210. doi: 10.1016/j.ymeth.2016.08.018. Epub 2016 Sep 2.
8
Automatic single cell segmentation on highly multiplexed tissue images.
Cytometry A. 2015 Oct;87(10):936-42. doi: 10.1002/cyto.a.22702. Epub 2015 Jul 2.
10
Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.
Med Image Anal. 2017 May;38:90-103. doi: 10.1016/j.media.2017.02.009. Epub 2017 Mar 6.

引用本文的文献

1
PUPAID: A R + ImageJ pipeline for thorough and semi-automated processing and analysis of multi-channel immunofluorescence data.
PLoS One. 2024 Sep 19;19(9):e0308970. doi: 10.1371/journal.pone.0308970. eCollection 2024.

本文引用的文献

1
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP).
Nat Cell Biol. 2023 Aug;25(8):1089-1100. doi: 10.1038/s41556-023-01194-w. Epub 2023 Jul 19.
2
CellSighter: a neural network to classify cells in highly multiplexed images.
Nat Commun. 2023 Jul 18;14(1):4302. doi: 10.1038/s41467-023-40066-7.
3
High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers.
Nat Cancer. 2023 Jul;4(7):1036-1052. doi: 10.1038/s43018-023-00576-1. Epub 2023 Jun 22.
4
In silico tissue generation and power analysis for spatial omics.
Nat Methods. 2023 Mar;20(3):424-431. doi: 10.1038/s41592-023-01766-6. Epub 2023 Mar 2.
5
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.
Cell. 2023 Jan 19;186(2):363-381.e19. doi: 10.1016/j.cell.2022.12.028.
7
Annotation of spatially resolved single-cell data with STELLAR.
Nat Methods. 2022 Nov;19(11):1411-1418. doi: 10.1038/s41592-022-01651-8. Epub 2022 Oct 24.
8
Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA.
Nat Methods. 2022 Jun;19(6):759-769. doi: 10.1038/s41592-022-01498-z. Epub 2022 Jun 2.
9
The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution.
Cancer Discov. 2022 Jun 2;12(6):1518-1541. doi: 10.1158/2159-8290.CD-21-1357.
10
Temporal and spatial topography of cell proliferation in cancer.
Nat Cell Biol. 2022 Mar;24(3):316-326. doi: 10.1038/s41556-022-00860-9. Epub 2022 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验