Suppr超能文献

COVision:使用 CT 扫描对 COVID-19 与常见肺部疾病进行区分的卷积神经网络。

COVision: convolutional neural network for the differentiation of COVID-19 from common pulmonary conditions using CT scans.

机构信息

Troy High School, Troy, MI, USA.

出版信息

BMC Pulm Med. 2023 Nov 28;23(1):475. doi: 10.1186/s12890-023-02723-x.

Abstract

With the growing amount of COVID-19 cases, especially in developing countries with limited medical resources, it is essential to accurately and efficiently diagnose COVID-19. Due to characteristic ground-glass opacities (GGOs) and other types of lesions being present in both COVID-19 and other acute lung diseases, misdiagnosis occurs often - 26.6% of the time in manual interpretations of CT scans. Current deep-learning models can identify COVID-19 but cannot distinguish it from other common lung diseases like bacterial pneumonia. Concretely, COVision is a deep-learning model that can differentiate COVID-19 from other common lung diseases, with high specificity using CT scans and other clinical factors. COVision was designed to minimize overfitting and complexity by decreasing the number of hidden layers and trainable parameters while still achieving superior performance. Our model consists of two parts: the CNN which analyzes CT scans and the CFNN (clinical factors neural network) which analyzes clinical factors such as age, gender, etc. Using federated averaging, we ensembled our CNN with the CFNN to create a comprehensive diagnostic tool. After training, our CNN achieved an accuracy of 95.8% and our CFNN achieved an accuracy of 88.75% on a validation set. We found a statistical significance that COVision performs better than three independent radiologists with at least 10 years of experience, especially in differentiating COVID-19 from pneumonia. We analyzed our CNN's activation maps through Grad-CAMs and found that lesions in COVID-19 presented peripherally, closer to the pleura, whereas pneumonia lesions presented centrally.

摘要

随着 COVID-19 病例的不断增加,特别是在医疗资源有限的发展中国家,准确、高效地诊断 COVID-19 至关重要。由于 COVID-19 和其他急性肺部疾病都存在特征性磨玻璃影(GGO)和其他类型的病变,因此经常会出现误诊——在 CT 扫描的手动解读中,误诊率为 26.6%。目前的深度学习模型可以识别 COVID-19,但无法将其与细菌性肺炎等其他常见肺部疾病区分开来。具体来说,COVision 是一种深度学习模型,它可以使用 CT 扫描和其他临床因素从其他常见肺部疾病中区分 COVID-19,具有很高的特异性。COVision 通过减少隐藏层和可训练参数的数量来最小化过拟合和复杂性,同时仍能实现卓越的性能。我们的模型由两部分组成:分析 CT 扫描的卷积神经网络(CNN)和分析年龄、性别等临床因素的卷积神经网络(CFNN)。我们使用联邦平均法,将我们的 CNN 与 CFNN 集成,创建了一个综合诊断工具。在训练后,我们的 CNN 在验证集上的准确率达到了 95.8%,我们的 CFNN 的准确率达到了 88.75%。我们发现 COVision 的表现明显优于三位至少有 10 年经验的独立放射科医生,尤其是在区分 COVID-19 和肺炎方面。我们通过 Grad-CAMs 分析了我们的 CNN 的激活图,发现 COVID-19 的病变位于外周,更接近胸膜,而肺炎的病变位于中央。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e18/10683202/ced749a7dcc2/12890_2023_2723_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验