Suppr超能文献

医学培训中的人工智能人性化:负责任设计的伦理框架。

Humanizing AI in medical training: ethical framework for responsible design.

作者信息

Tahri Sqalli Mohammed, Aslonov Begali, Gafurov Mukhammadjon, Nurmatov Shokhrukhbek

机构信息

Department of Economics, School of Foreign Services, Georgetown University in Qatar, Doha, Qatar.

Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy.

出版信息

Front Artif Intell. 2023 May 16;6:1189914. doi: 10.3389/frai.2023.1189914. eCollection 2023.

Abstract

The increasing use of artificial intelligence (AI) in healthcare has brought about numerous ethical considerations that push for reflection. Humanizing AI in medical training is crucial to ensure that the design and deployment of its algorithms align with ethical principles and promote equitable healthcare outcomes for both medical practitioners trainees and patients. This perspective article provides an ethical framework for responsibly designing AI systems in medical training, drawing on our own past research in the fields of electrocardiogram interpretation training and e-health wearable devices. The article proposes five pillars of responsible design: transparency, fairness and justice, safety and wellbeing, accountability, and collaboration. The transparency pillar highlights the crucial role of maintaining the explainabilty of AI algorithms, while the fairness and justice pillar emphasizes on addressing biases in healthcare data and designing models that prioritize equitable medical training outcomes. The safety and wellbeing pillar however, emphasizes on the need to prioritize patient safety and wellbeing in AI model design whether it is for training or simulation purposes, and the accountability pillar calls for establishing clear lines of responsibility and liability for AI-derived decisions. Finally, the collaboration pillar emphasizes interdisciplinary collaboration among stakeholders, including physicians, data scientists, patients, and educators. The proposed framework thus provides a practical guide for designing and deploying AI in medicine generally, and in medical training specifically in a responsible and ethical manner.

摘要

人工智能(AI)在医疗保健领域的使用日益增加,引发了诸多需要思考的伦理问题。在医学培训中使人工智能人性化,对于确保其算法的设计和部署符合伦理原则,并为医学实习人员和患者促进公平的医疗保健结果至关重要。这篇观点文章借鉴了我们自己在心电图解读培训和电子健康可穿戴设备领域过去的研究,为在医学培训中负责任地设计人工智能系统提供了一个伦理框架。文章提出了负责任设计的五大支柱:透明度、公平与正义、安全与福祉、问责制以及协作。透明度支柱强调了保持人工智能算法可解释性的关键作用,而公平与正义支柱则着重于解决医疗保健数据中的偏差,并设计优先考虑公平医学培训结果的模型。然而,安全与福祉支柱强调,无论是出于培训还是模拟目的,在人工智能模型设计中都需要将患者安全和福祉放在首位,问责制支柱要求为人工智能做出的决策明确责任和义务界限。最后,协作支柱强调利益相关者之间的跨学科协作,包括医生、数据科学家、患者和教育工作者。因此,所提出的框架为以负责任和符合伦理的方式在医学中,特别是在医学培训中设计和部署人工智能提供了实用指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/762d/10227566/3043a78c6c8b/frai-06-1189914-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验