Suppr超能文献

腹部手术后全身麻醉苏醒期躁动预测模型的影响因素分析及临床应用

Analysis of influencing factors and clinical application of a predictive model for emergence agitation from general anesthesia after abdominal surgery.

作者信息

Wan Yuanyuan, Ye Haitao, Liu Kun

机构信息

Department of Anesthesiology, National Children's Medical Center and Children's Hospital of Fudan University Wanyuan Road 399, Minhang District, Shanghai 201102, China.

Medical Department, Minhang District Mental Health Center of Shanghai Shanghai 201112, China.

出版信息

Am J Transl Res. 2025 Mar 15;17(3):1742-1755. doi: 10.62347/SSEP8225. eCollection 2025.

Abstract

OBJECTIVES

To identify factors influencing emergence agitation (EA) in abdominal surgery patients and develop a predictive model for early clinical intervention.

METHODS

We retrospectively analyzed data from 794 patients who underwent abdominal surgery between June 2022 and June 2024. Independent risk factors for EA were identified using multivariate logistic regression, which informed the construction of a nomogram model. The dataset was split into a training set (67%) and a validation set (33%), with an additional 119 patients serving as an external validation set. Data analysis was performed using SPSS 26.0 and R 4.3.3, and model performance was assessed using Receiver Operating Characteristic (ROC) and calibration curves.

RESULTS

Multivariate analysis revealed nine independent risk factors for EA: age, ASA classification, type of surgery, duration of surgery, intraoperative fluid volume, use of analgesic pumps, catheter usage, postoperative pain, and smoking history. The model's area under the curve (AUC) was 0.787 in the training set, 0.623 in the validation set, and 0.666 in the external validation set, indicating good predictive performance. Calibration curves demonstrated a strong agreement between predicted and observed outcomes, confirming the model's accuracy and consistency.

CONCLUSION

The developed nomogram integrates multiple risk factors to predict EA risk in abdominal surgery patients. It demonstrates high stability and applicability across different datasets, facilitating early identification of high-risk patients and supporting individualized postoperative management.

摘要

目的

确定影响腹部手术患者苏醒期躁动(EA)的因素,并建立早期临床干预的预测模型。

方法

我们回顾性分析了2022年6月至2024年6月期间接受腹部手术的794例患者的数据。使用多因素逻辑回归确定EA的独立危险因素,据此构建列线图模型。数据集被分为训练集(67%)和验证集(33%),另有119例患者作为外部验证集。使用SPSS 26.0和R 4.3.3进行数据分析,并使用受试者工作特征(ROC)曲线和校准曲线评估模型性能。

结果

多因素分析显示EA的九个独立危险因素:年龄、美国麻醉医师协会(ASA)分级、手术类型、手术持续时间、术中输液量、镇痛泵使用情况、导管使用情况、术后疼痛和吸烟史。该模型在训练集中的曲线下面积(AUC)为0.787,在验证集中为0.623,在外部验证集中为0.666,表明具有良好的预测性能。校准曲线显示预测结果与观察结果高度一致,证实了模型的准确性和一致性。

结论

所建立的列线图整合了多个危险因素,以预测腹部手术患者的EA风险。它在不同数据集中表现出高稳定性和适用性,有助于早期识别高危患者并支持个体化的术后管理。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验