Suppr超能文献

人工智能在超声心动图中的应用综述

A comprehensive review of applications of artificial intelligence in echocardiography.

机构信息

Department of Cardiology, Bacha Khan Medical College, Mardan, KPK 23200, Pakistan.

出版信息

Curr Probl Cardiol. 2024 Feb;49(2):102250. doi: 10.1016/j.cpcardiol.2023.102250. Epub 2023 Dec 1.

Abstract

Echocardiography plays a crucial role in diagnosis of cardiovascular diseases. Artificial intelligence has emerged as a high-precision tool to automate echocardiographic analysis. This review discusses AI algorithms that have been utilized at various steps of echocardiographic analysis such as image acquisition, standard view classification, cardiac chamber segmentation, quantification of cardiac structure and function and aid diagnosis. The under-discussion AI models demonstrated high accuracy comparable to experts in view classification, measurement of cardiac structure and function and diagnosis of conditions such as cardiomyopathies. This review also discusses potential benefits and the value of AI in revolutionizing healthcare. It also explores the limitations such as the lack of large annotated datasets to train AI models and potential algorithm biases making it challenging to translate the benefits of AI into wider clinical practice.

摘要

超声心动图在心血管疾病的诊断中起着至关重要的作用。人工智能已成为一种高精度工具,可以实现超声心动图分析的自动化。本综述讨论了已在超声心动图分析的各个步骤中使用的人工智能算法,例如图像采集、标准视图分类、心脏腔室分割、心脏结构和功能的定量以及辅助诊断。所讨论的人工智能模型在视图分类、心脏结构和功能的测量以及心肌病等疾病的诊断方面表现出了与专家相当的高精度。本综述还讨论了人工智能在改变医疗保健方面的潜在益处和价值。它还探讨了一些限制因素,例如缺乏大型注释数据集来训练人工智能模型,以及潜在的算法偏差,这使得将人工智能的益处转化为更广泛的临床实践具有挑战性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验