Suppr超能文献

轻量化头盔目标检测算法结合 Effici-Bi-Level Routing Attention。

Lightweight helmet target detection algorithm combined with Effici-Bi-Level Routing Attention.

机构信息

College of Electrical and Automation, Jiangxi University of Science and Technology, GanZhou, China.

出版信息

PLoS One. 2024 May 29;19(5):e0303866. doi: 10.1371/journal.pone.0303866. eCollection 2024.

Abstract

Wearing helmets is essential in two-wheeler traffic to reduce the incidence of injuries caused by accidents. We present FB-YOLOv7, an improved detection network based on the YOLOv7-tiny model. The objective of this network is to tackle the problems of both missed detection and false detection that result from the difficulties in identifying small targets and the constraints in equipment performance during helmet detection. By applying an enhanced Bi-Level Routing Attention, the network can improve its capacity to extract global characteristics and reduce information distortion. Furthermore, we deploy the AFPN framework and effectively resolve information conflict using asymptotic adaptive feature fusion technology. Incorporating the EfficiCIoU loss significantly improves the prediction box's accuracy. Experimental trials done on specific datasets reveal that FB-YOLOv7 attains an accuracy of 87.2% and 94.6% on the mean average precision (mAP@.5). Additionally, it maintains a high level of efficiency with frame rates of 129 and 126 frames per second (FPS). FB-YOLOv7 surpasses the other six widely-used detection networks in terms of detection accuracy, network implementation requirements, sensitivity in detecting small targets, and potential for practical applications.

摘要

在两轮车交通中,佩戴头盔对于减少事故造成的伤害至关重要。我们提出了 FB-YOLOv7,这是一种基于 YOLOv7-tiny 模型的改进检测网络。该网络的目标是解决在头盔检测中由于小目标识别困难和设备性能限制导致的漏检和误检问题。通过应用增强型双级路由注意力机制,网络可以提高提取全局特征的能力,减少信息失真。此外,我们部署了 AFPN 框架,并使用渐近自适应特征融合技术有效地解决了信息冲突。引入 EfficiCIoU 损失显著提高了预测框的准确性。在特定数据集上进行的实验表明,FB-YOLOv7 在平均精度(mAP@.5)上达到了 87.2%和 94.6%的准确率。此外,它的帧率分别为 129 和 126 帧每秒(FPS),具有很高的效率。FB-YOLOv7 在检测精度、网络实现要求、小目标检测灵敏度以及实际应用潜力等方面均优于其他六个广泛使用的检测网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1640/11135749/a4c3e7371636/pone.0303866.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验