文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介导的银纳米粒子的抗菌、清除自由基和抗癌潜力的特性研究。

The Characterization and Study of Antibacterial, Free Radical Scavenging, and Anticancer Potential of -Mediated Silver Nanoparticles.

机构信息

Institute of Industrial Biotechnology (IIB), Government College University Lahore, Lahore 54000, Pakistan.

Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

出版信息

Molecules. 2023 Nov 25;28(23):7773. doi: 10.3390/molecules28237773.


DOI:10.3390/molecules28237773
PMID:38067504
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10708060/
Abstract

In the present research, leaf extracts were utilized as reductants to bio-fabricate silver nanoparticles (LC-AgNPs) and this was followed by the evaluation of their antioxidant, antibacterial, and anticancer potential. Multiple parameters were optimized for the formation and fidelity of LC-AgNPs. The color shift of the reaction mixture from yellow to dark brown confirmed the LC-AgNPs formation. UV/VIS spectroscopy exhibited a surface plasmon resonance (SPR) band at 436 nm. The Fourier transform infrared (FTIR) spectroscopy spectrum depicted phytochemicals in the plant extract acting as bio-reducers for LC-AgNPs synthesis. The XRD pattern confirmed the presence of LC-AgNPs by showing peaks corresponding to 2θ angle at 8.24° (111), 38.16° (200), 44.20° (220), and 64.72° (311). Zetasizer analysis exhibited size distribution by intensity of LC-AgNPs with a mean value of 255.7 d. nm. Moreover, the zeta potential indicated that the AgNPs synthesized were stable. The irregular shape of LC-AgNPs with a mean average of 38.46 ± 0.26 nm was found by scanning electron microscopy. Furthermore, the antioxidant potential of LC-AgNPs was examined using a DPPH assay and was calculated to be higher in LC-AgNPs than in leaf extracts. The calculated IC values of the LC-AgNPs and plant extract are 85.01 ± 0.17 and 209.44 ± 0.24, respectively. The antibacterial activity of LC-AgNPs was investigated against , , and as well as and maximum potential was observed after 24 h against . Moreover, LC-AgNPs exhibited maximum anticancer potential against TPC1 cell lines compared to the plant extract. The findings suggested that LC-AgNPs could be used as antioxidant, antibacterial, and anticancer agents for the cure of free-radical-oriented bacterial and oncogenic diseases.

摘要

在本研究中,利用叶提取物作为还原剂来生物制造银纳米粒子(LC-AgNPs),并评估其抗氧化、抗菌和抗癌潜力。优化了多个参数以形成和保真度 LC-AgNPs。反应混合物从黄色变为深棕色的颜色变化证实了 LC-AgNPs 的形成。紫外/可见光谱在 436nm 处显示出表面等离子体共振(SPR)带。傅里叶变换红外(FTIR)光谱图显示植物提取物中的植物化学物质作为生物还原剂合成 LC-AgNPs。X 射线衍射(XRD)图谱通过显示对应于 2θ 角为 8.24°(111)、38.16°(200)、44.20°(220)和 64.72°(311)的峰来证实 LC-AgNPs 的存在。Zetasizer 分析通过 LC-AgNPs 的强度显示粒径分布,平均值为 255.7d。nm。此外,zeta 电位表明合成的 AgNPs 是稳定的。通过扫描电子显微镜发现 LC-AgNPs 的形状不规则,平均粒径为 38.46±0.26nm。此外,通过 DPPH 测定法检查了 LC-AgNPs 的抗氧化潜力,并发现 LC-AgNPs 的抗氧化潜力高于叶提取物。LC-AgNPs 和植物提取物的计算 IC 值分别为 85.01±0.17 和 209.44±0.24。研究了 LC-AgNPs 的抗菌活性,结果表明,LC-AgNPs 对 、 、 和 以及 具有抗菌活性,24 小时后对 表现出最大潜力。此外,与植物提取物相比,LC-AgNPs 对 TPC1 细胞系表现出最大的抗癌潜力。研究结果表明,LC-AgNPs 可用作抗氧化、抗菌和抗癌剂,用于治疗自由基导向的细菌和致癌性疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/73cb9aa1ccb5/molecules-28-07773-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/ba39fdd68a80/molecules-28-07773-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/17f4367359f2/molecules-28-07773-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/01fe2a58cb9f/molecules-28-07773-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/1c6150167b8b/molecules-28-07773-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d376e0a95cf5/molecules-28-07773-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/ffe758f734fa/molecules-28-07773-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d57c6445e66c/molecules-28-07773-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/70e3d5ef8948/molecules-28-07773-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d15a3d5edca7/molecules-28-07773-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/1696e77b8bb8/molecules-28-07773-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/be385b6a7ca8/molecules-28-07773-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/73cb9aa1ccb5/molecules-28-07773-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/ba39fdd68a80/molecules-28-07773-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/17f4367359f2/molecules-28-07773-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/01fe2a58cb9f/molecules-28-07773-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/1c6150167b8b/molecules-28-07773-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d376e0a95cf5/molecules-28-07773-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/ffe758f734fa/molecules-28-07773-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d57c6445e66c/molecules-28-07773-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/70e3d5ef8948/molecules-28-07773-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/d15a3d5edca7/molecules-28-07773-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/1696e77b8bb8/molecules-28-07773-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/be385b6a7ca8/molecules-28-07773-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d4/10708060/73cb9aa1ccb5/molecules-28-07773-g012.jpg

相似文献

[1]
The Characterization and Study of Antibacterial, Free Radical Scavenging, and Anticancer Potential of -Mediated Silver Nanoparticles.

Molecules. 2023-11-25

[2]
Eco-friendly Synthesis, Characterization, and Biological Evaluation of Silver Nanoparticles from Verbascum uschakense Aqueous Extract.

Acta Chim Slov. 2025-6-12

[3]
Phytosynthesis of Silver Nanoparticles Using Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities.

Int J Nanomedicine. 2021

[4]
Biological Potential of Silver Nanoparticles Mediated by and Extracts.

Nanomaterials (Basel). 2021-8-18

[5]
Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications.

Bioprocess Biosyst Eng. 2024-8

[6]
Antioxidant property of Silver Nanoparticles Loaded with Alcoholic Extraction of Lycium Shawii.

Asian Pac J Cancer Prev. 2025-6-1

[7]
Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications.

Bioprocess Biosyst Eng. 2024-8

[8]
Cytotoxic Effects of (Planch.) Extract and Triterpenoids-derived Gold Nanoparticles On MCF-7 Breast Cancer Cell Lines.

Anticancer Agents Med Chem. 2025

[9]
Biosynthesis of Silver Nanoparticles from : Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities.

Int J Nanomedicine. 2019-12-11

[10]
Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

Int J Nanomedicine. 2016-4-29

引用本文的文献

[1]
Heavy Metal Accumulation and Health Risks in Selected Leafy Vegetables Irrigated with Mixed Potable and Wastewater-A Case Study: Southern Tehran, Iran.

Biol Trace Elem Res. 2025-9-8

[2]
Effects of Trace Elements on Endocrine Function and Pathogenesis of Thyroid Diseases-A Literature Review.

Nutrients. 2025-1-22

[3]
Photocatalytic removal of textile wastewater-originated methylene blue and malachite green dyes using spent black tea extract-coated silver nanoparticles.

Sci Rep. 2025-1-13

本文引用的文献

[1]
Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties.

World J Microbiol Biotechnol. 2023-10-16

[2]
Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress.

Sci Rep. 2023-10-14

[3]
Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding.

Planta. 2023-10-12

[4]
Aconitum lycoctonum L. (Ranunculaceae) mediated biogenic synthesis of silver nanoparticles as potential antioxidant, anti-inflammatory, antimicrobial and antidiabetic agents.

BMC Chem. 2023-9-28

[5]
Ameliorative Effects of Exogenous Potassium Nitrate on Antioxidant Defense System and Mineral Nutrient Uptake in Radish ( L.) under Salinity Stress.

ACS Omega. 2023-6-12

[6]
Phytochemical analysis of Origanum majorana L. extract and investigation of its antioxidant, anti-inflammatory and immunomodulatory effects against experimentally induced colitis downregulating Th17 cells.

J Ethnopharmacol. 2023-12-5

[7]
Silver nanoparticles with exceptional near-infrared absorbance for photoenhanced antimicrobial applications.

J Mater Chem B. 2023-7-5

[8]
Bacterial-Mediated Salinity Stress Tolerance in Maize ( L.): A Fortunate Way toward Sustainable Agriculture.

ACS Omega. 2023-5-26

[9]
Biogenic Fabrication of Silver Nanoparticles Using Flower Extract with Enhanced Biomimetics Attributes.

Materials (Basel). 2023-5-30

[10]
Phytochemical screening and allelopathic potential of phytoextracts of three invasive grass species.

Sci Rep. 2023-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索