Suppr超能文献

探索单细胞测序鉴定的长链非编码RNA(LncRNA)在非小细胞肺癌患者中的预后意义及免疫治疗潜力。

Exploring the Prognostic Significance and Immunotherapeutic Potential of Single-Cell Sequencing-Identified Long Noncoding RNA (LncRNA) in Patients With Non-small Cell Lung Cancer.

作者信息

Chen Ling, Wang Lina, Xiong Zhuolong, Zhu Xiao, Chen Lianzhou

机构信息

Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHN.

Department of Genetics, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, CHN.

出版信息

Cureus. 2023 Nov 7;15(11):e48436. doi: 10.7759/cureus.48436. eCollection 2023 Nov.

Abstract

BACKGROUND

Single-cell RNA sequencing technology can provide insight into lung cancer. The purpose of this study was to analyze the relationship between long noncoding RNA (lncRNA) discovered by RNA sequencing and immunotherapy in patients with non-small cell lung cancer (NSCLC).

METHODS

In this study, we utilized data from The Cancer Genome Atlas (TCGA) to extract gene expression data and prognostic information from patients with NSCLC. We employed univariate, least absolute shrinkage and selection operator (LASSO), multivariate Cox regression analyses to construct risk models, and Kaplan-Meier (KM) analysis to compare survival differences between high- and low-risk groups. To evaluate the accuracy of our risk model predictions, we utilized a nomogram, calibration curve, correlation index curve (C-index), and receiver operating characteristic (ROC). Additionally, we conducted Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to investigate the differential expression of lncRNA genes. We also used the tumor immune dysfunction and exclusivity (TIDE) algorithm and the R package "pRRophetic" to analyze the tumor microenvironment. Finally, we utilized stem cell indices based on mRNA expression-based stemness index (mRNAsi) expression to better assess patient prognosis.

RESULTS

Our analysis identified a set of 28 lncRNAs with prognostic risk profiles in patients with lung adenocarcinoma. Notably, patients in the low-risk group exhibited significantly better overall survival (OS) compared to those in the high-risk group. Kaplan-Meier (KM) survival curves revealed that these prognostic risk markers accurately predicted survival outcomes in non-small cell lung cancer (NSCLC) patients. MerCK18 and myeloid-derived suppressor cells (MDSC) were strongly associated with immune escape and immunotherapy in high- and low-risk subgroups. In our investigation of potential chemotherapeutic agents for the treatment of NSCLC, we screened a total of 60 agents and found that PPM1D was more effective in the low-risk group. However, we did not observe a strong correlation between the stem cell index mRNAsi and OS.

CONCLUSION

Our study highlights the close association between lncRNAs and prognostic risk profiles and the prognosis of patients with non-small cell lung cancer, offering a promising avenue for the clinical implementation of immunotherapy.

摘要

背景

单细胞RNA测序技术有助于深入了解肺癌。本研究旨在分析通过RNA测序发现的长链非编码RNA(lncRNA)与非小细胞肺癌(NSCLC)患者免疫治疗之间的关系。

方法

在本研究中,我们利用癌症基因组图谱(TCGA)的数据,提取NSCLC患者的基因表达数据和预后信息。我们采用单因素、最小绝对收缩和选择算子(LASSO)、多因素Cox回归分析来构建风险模型,并采用Kaplan-Meier(KM)分析比较高风险组和低风险组之间的生存差异。为了评估我们风险模型预测的准确性,我们使用了列线图、校准曲线、相关指数曲线(C指数)和受试者工作特征(ROC)。此外,我们进行了基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)富集分析,以研究lncRNA基因的差异表达。我们还使用肿瘤免疫功能障碍和排除(TIDE)算法以及R包“pRRophetic”来分析肿瘤微环境。最后,我们利用基于mRNA表达的干性指数(mRNAsi)表达的干细胞指数来更好地评估患者预后。

结果

我们的分析确定了一组28个在肺腺癌患者中具有预后风险特征的lncRNA。值得注意的是,低风险组患者的总生存期(OS)明显优于高风险组。Kaplan-Meier(KM)生存曲线显示,这些预后风险标志物准确预测了非小细胞肺癌(NSCLC)患者的生存结果。MerCK18和髓源性抑制细胞(MDSC)在高风险和低风险亚组中与免疫逃逸和免疫治疗密切相关。在我们对治疗NSCLC的潜在化疗药物的研究中,我们总共筛选了60种药物,发现PPM1D在低风险组中更有效。然而,我们没有观察到干细胞指数mRNAsi与OS之间有很强的相关性。

结论

我们的研究强调了lncRNA与预后风险特征以及非小细胞肺癌患者预后之间的密切关联,为免疫治疗的临床应用提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894a/10702252/8baae76cc04c/cureus-0015-00000048436-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验