文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分层数据集中错误的严重程度。

Severity of error in hierarchical datasets.

作者信息

Srivastava Satwik, Mishra Deepak

机构信息

Department of Mathematics, Indian Institute of Technology Jodhpur, Jodhpur, India.

Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India.

出版信息

Sci Rep. 2023 Dec 11;13(1):21903. doi: 10.1038/s41598-023-49185-z.


DOI:10.1038/s41598-023-49185-z
PMID:38082029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10713548/
Abstract

Classification tasks today, especially for the medical domain, use datasets which are often hierarchical. These tasks are approached using methods that consider the class taxonomy for predicting a label. The classifiers are gradually becoming increasingly accurate over the complex datasets. While increasing accuracy is a good way to judge a model, in high-risk applications, it needs to be ensured that even if the model makes a mistake, it does not bear a severe consequence. This work explores the concept of severity of an error and extends it to the medical domain. Further, it aims to point out that accuracy or AUROC alone are not sufficient metrics to decide the performance of a model in a setting where a misclassification will incur a severe cost. Various approaches to reduce severity for classification models are compared and evaluated in this work, which indicate that while many of them might be suited for a traditional image classification setting, there is a need for techniques tailored toward tasks and settings of medical domain to push artificial intelligence in healthcare to a deployable state.

摘要

如今的分类任务,尤其是医学领域的分类任务,使用的数据集通常是分层的。这些任务采用考虑类分类法来预测标签的方法进行处理。在复杂数据集上,分类器的准确性正逐渐提高。虽然提高准确性是评判模型的一个好方法,但在高风险应用中,需要确保即使模型出错,也不会带来严重后果。这项工作探索了错误严重性的概念,并将其扩展到医学领域。此外,它旨在指出,在错误分类会导致严重代价的情况下,仅靠准确性或曲线下面积(AUROC)不足以决定模型的性能。这项工作对降低分类模型严重性的各种方法进行了比较和评估,结果表明,虽然其中许多方法可能适用于传统的图像分类场景,但需要针对医学领域的任务和场景量身定制技术,以便将医疗保健领域的人工智能推向可部署状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/5c2a1d411a2b/41598_2023_49185_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/659cc1d03edd/41598_2023_49185_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/7ee7df478739/41598_2023_49185_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/53d9563dcdee/41598_2023_49185_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/e7ff3b0004df/41598_2023_49185_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/5c2a1d411a2b/41598_2023_49185_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/659cc1d03edd/41598_2023_49185_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/7ee7df478739/41598_2023_49185_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/53d9563dcdee/41598_2023_49185_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/e7ff3b0004df/41598_2023_49185_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b6/10713548/5c2a1d411a2b/41598_2023_49185_Fig5_HTML.jpg

相似文献

[1]
Severity of error in hierarchical datasets.

Sci Rep. 2023-12-11

[2]

2013-2

[3]
Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms.

J Biomed Inform. 2014-10

[4]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[5]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[6]
An active learning based classification strategy for the minority class problem: application to histopathology annotation.

BMC Bioinformatics. 2011-10-28

[7]
Model for Predicting In-Hospital Mortality of Physical Trauma Patients Using Artificial Intelligence Techniques: Nationwide Population-Based Study in Korea.

J Med Internet Res. 2022-12-13

[8]
Cost-sensitive Performance Metric for Comparing Multiple Ordinal Classifiers.

Artif Intell Res. 2016

[9]
Exploring Misclassification Information for Fine-Grained Image Classification.

Sensors (Basel). 2021-6-18

[10]
Hierarchy-aware contrastive learning with late fusion for skin lesion classification.

Comput Methods Programs Biomed. 2022-4

本文引用的文献

[1]
Tackling prediction uncertainty in machine learning for healthcare.

Nat Biomed Eng. 2023-6

[2]
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning.

Nat Biomed Eng. 2022-12

[3]
Evaluating hierarchical machine learning approaches to classify biological databases.

Brief Bioinform. 2022-7-18

[4]
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model.

Nat Commun. 2022-4-6

[5]
AI in health and medicine.

Nat Med. 2022-1

[6]
FractureNet: A 3D Convolutional Neural Network Based on the Architecture of m-Ary Tree for Fracture Type Identification.

IEEE Trans Med Imaging. 2022-5

[7]
The role of artificial intelligence in healthcare: a structured literature review.

BMC Med Inform Decis Mak. 2021-4-10

[8]
Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images.

Sci Rep. 2021-3-1

[9]
Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided Multi-View Semantic Embedding With Self-Training.

IEEE Trans Med Imaging. 2021-10

[10]
Second opinion needed: communicating uncertainty in medical machine learning.

NPJ Digit Med. 2021-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索