Suppr超能文献

基于与可解释人工智能模型的定量相似度对胸部X光图像进行准确自动标注。

Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model.

作者信息

Kim Doyun, Chung Joowon, Choi Jongmun, Succi Marc D, Conklin John, Longo Maria Gabriela Figueiro, Ackman Jeanne B, Little Brent P, Petranovic Milena, Kalra Mannudeep K, Lev Michael H, Do Synho

机构信息

Department of Radiology, Massachusetts General Brigham and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Commun. 2022 Apr 6;13(1):1867. doi: 10.1038/s41467-022-29437-8.

Abstract

The inability to accurately, efficiently label large, open-access medical imaging datasets limits the widespread implementation of artificial intelligence models in healthcare. There have been few attempts, however, to automate the annotation of such public databases; one approach, for example, focused on labor-intensive, manual labeling of subsets of these datasets to be used to train new models. In this study, we describe a method for standardized, automated labeling based on similarity to a previously validated, explainable AI (xAI) model-derived-atlas, for which the user can specify a quantitative threshold for a desired level of accuracy (the probability-of-similarity, pSim metric). We show that our xAI model, by calculating the pSim values for each clinical output label based on comparison to its training-set derived reference atlas, can automatically label the external datasets to a user-selected, high level of accuracy, equaling or exceeding that of human experts. We additionally show that, by fine-tuning the original model using the automatically labelled exams for retraining, performance can be preserved or improved, resulting in a highly accurate, more generalized model.

摘要

无法准确、高效地标记大型开放获取医学影像数据集限制了人工智能模型在医疗保健领域的广泛应用。然而,几乎没有人尝试过自动注释此类公共数据库;例如,一种方法侧重于对这些数据集的子集进行劳动密集型手动标记,以用于训练新模型。在本研究中,我们描述了一种基于与先前经过验证的、可解释的人工智能(xAI)模型派生图谱的相似性进行标准化自动标记的方法,用户可以为所需的准确度水平指定一个定量阈值(相似概率,pSim指标)。我们表明,我们的xAI模型通过基于与其训练集派生的参考图谱的比较计算每个临床输出标签的pSim值,可以将外部数据集自动标记到用户选择的高水平准确度,等同于或超过人类专家的准确度。我们还表明,通过使用自动标记的检查对原始模型进行微调以进行重新训练,可以保持或提高性能,从而得到一个高度准确、更通用的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/f99545579db3/41467_2022_29437_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验