文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于与可解释人工智能模型的定量相似度对胸部X光图像进行准确自动标注。

Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model.

作者信息

Kim Doyun, Chung Joowon, Choi Jongmun, Succi Marc D, Conklin John, Longo Maria Gabriela Figueiro, Ackman Jeanne B, Little Brent P, Petranovic Milena, Kalra Mannudeep K, Lev Michael H, Do Synho

机构信息

Department of Radiology, Massachusetts General Brigham and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Commun. 2022 Apr 6;13(1):1867. doi: 10.1038/s41467-022-29437-8.


DOI:10.1038/s41467-022-29437-8
PMID:35388010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8986787/
Abstract

The inability to accurately, efficiently label large, open-access medical imaging datasets limits the widespread implementation of artificial intelligence models in healthcare. There have been few attempts, however, to automate the annotation of such public databases; one approach, for example, focused on labor-intensive, manual labeling of subsets of these datasets to be used to train new models. In this study, we describe a method for standardized, automated labeling based on similarity to a previously validated, explainable AI (xAI) model-derived-atlas, for which the user can specify a quantitative threshold for a desired level of accuracy (the probability-of-similarity, pSim metric). We show that our xAI model, by calculating the pSim values for each clinical output label based on comparison to its training-set derived reference atlas, can automatically label the external datasets to a user-selected, high level of accuracy, equaling or exceeding that of human experts. We additionally show that, by fine-tuning the original model using the automatically labelled exams for retraining, performance can be preserved or improved, resulting in a highly accurate, more generalized model.

摘要

无法准确、高效地标记大型开放获取医学影像数据集限制了人工智能模型在医疗保健领域的广泛应用。然而,几乎没有人尝试过自动注释此类公共数据库;例如,一种方法侧重于对这些数据集的子集进行劳动密集型手动标记,以用于训练新模型。在本研究中,我们描述了一种基于与先前经过验证的、可解释的人工智能(xAI)模型派生图谱的相似性进行标准化自动标记的方法,用户可以为所需的准确度水平指定一个定量阈值(相似概率,pSim指标)。我们表明,我们的xAI模型通过基于与其训练集派生的参考图谱的比较计算每个临床输出标签的pSim值,可以将外部数据集自动标记到用户选择的高水平准确度,等同于或超过人类专家的准确度。我们还表明,通过使用自动标记的检查对原始模型进行微调以进行重新训练,可以保持或提高性能,从而得到一个高度准确、更通用的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/bdef98d2cda0/41467_2022_29437_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/f99545579db3/41467_2022_29437_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/14d63d17b8cf/41467_2022_29437_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/31fb04935a1c/41467_2022_29437_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/ec31af8bc058/41467_2022_29437_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/f63cb27ca279/41467_2022_29437_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/b796c86e64c3/41467_2022_29437_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/12e591002f55/41467_2022_29437_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/bdef98d2cda0/41467_2022_29437_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/f99545579db3/41467_2022_29437_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/14d63d17b8cf/41467_2022_29437_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/31fb04935a1c/41467_2022_29437_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/ec31af8bc058/41467_2022_29437_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/f63cb27ca279/41467_2022_29437_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/b796c86e64c3/41467_2022_29437_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/12e591002f55/41467_2022_29437_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c87/8986787/bdef98d2cda0/41467_2022_29437_Fig8_HTML.jpg

相似文献

[1]
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model.

Nat Commun. 2022-4-6

[2]
Development and validation of open-source deep neural networks for comprehensive chest x-ray reading: a retrospective, multicentre study.

Lancet Digit Health. 2024-1

[3]
Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence.

Sci Rep. 2024-3-14

[4]
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.

J Adv Res. 2023-6

[5]
Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification.

J Imaging. 2023-8-30

[6]
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.

JAMA Netw Open. 2020-10-1

[7]
Improving explainable AI with patch perturbation-based evaluation pipeline: a COVID-19 X-ray image analysis case study.

Sci Rep. 2023-11-9

[8]
Diagnostic performance of artificial intelligence model for pneumonia from chest radiography.

PLoS One. 2021

[9]
Pulmonary abnormality screening on chest x-rays from different machine specifications: a generalized AI-based image manipulation pipeline.

Eur Radiol Exp. 2023-11-9

[10]
Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images.

Hum Reprod. 2024-6-3

引用本文的文献

[1]
Comparative Analysis of M4CXR, an LLM-Based Chest X-Ray Report Generation Model, and ChatGPT in Radiological Interpretation.

J Clin Med. 2024-11-22

[2]
[Explainable & Safe Artificial Intelligence in Radiology].

J Korean Soc Radiol. 2024-9

[3]
Deep-Learning Based Automated Segmentation and Quantitative Volumetric Analysis of Orbital Muscle and Fat for Diagnosis of Thyroid Eye Disease.

Invest Ophthalmol Vis Sci. 2024-5-1

[4]
Explainable deep-neural-network supported scheme for tuberculosis detection from chest radiographs.

BMC Med Imaging. 2024-2-5

[5]
Validation of a Deep Learning Chest X-ray Interpretation Model: Integrating Large-Scale AI and Large Language Models for Comparative Analysis with ChatGPT.

Diagnostics (Basel). 2023-12-30

[6]
A deep learning approach using an ensemble model to autocreate an image-based hip fracture registry.

OTA Int. 2023-12-22

[7]
A systematic review and meta-analysis on ChatGPT and its utilization in medical and dental research.

Heliyon. 2023-11-29

[8]
Severity of error in hierarchical datasets.

Sci Rep. 2023-12-11

[9]
A Deep Learning Model for Screening Computed Tomography Imaging for Thyroid Eye Disease and Compressive Optic Neuropathy.

Ophthalmol Sci. 2023-10-13

[10]
Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study.

J Med Internet Res. 2023-8-22

本文引用的文献

[1]
A Collaborative Artificial Intelligence Annotation Platform Leveraging Blockchain For Medical Imaging Research.

Blockchain Healthc Today. 2021-6-22

[2]
Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm.

Radiol Artif Intell. 2021-11-10

[3]
Assessing the Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging.

Radiol Artif Intell. 2021-10-6

[4]
Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study.

Radiology. 2021-5

[5]
COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.

Sci Rep. 2020-11-11

[6]
Refining dataset curation methods for deep learning-based automated tuberculosis screening.

J Thorac Dis. 2020-9

[7]
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV.

NPJ Digit Med. 2020-9-9

[8]
PadChest: A large chest x-ray image dataset with multi-label annotated reports.

Med Image Anal. 2020-12

[9]
Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.

Phys Eng Sci Med. 2020-4-3

[10]
Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets.

IEEE Trans Med Imaging. 2020-5-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索