Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
J Am Chem Soc. 2023 Dec 27;145(51):28240-28250. doi: 10.1021/jacs.3c11463. Epub 2023 Dec 12.
Although fusogenic liposomes offer a promising approach for the delivery of antibiotic payloads across the cell envelope of Gram-negative bacteria, there is still a limited understanding of the individual nanocarrier interactions with the bacterial target. Using super-resolution microscopy, we characterize the interaction dynamics of positively charged fusogenic liposomes with Gram-negative () and Gram-positive () bacteria. The liposomes merge with the outer membrane (OM) of Gram-negative bacteria, while attachment or lipid internalization is observed in Gram-positive cells. Employing total internal reflection fluorescence microscopy, we demonstrated liposome fusion with model supported lipid bilayers. For whole cells, however, we observed heterogeneous membrane integrations, primarily involving liposome attachment and hemifusion events. With increasing lipopolysaccharide length, the likelihood of full-fusion events was reduced. The integration of artificial lipids into the OM of Gram-negative cells led to membrane destabilization, resulting in decreased bacterial vitality, membrane detachment, and improved codelivery of vancomycin─an effective antibiotic against Gram-positive cells. These findings provide significant insights into the interactions of individual nanocarriers with bacterial envelopes at the single-cell level, uncovering effects that would be missed in bulk measurements. This highlights the importance of conducting single-particle and single-cell investigations to assess the performance of next-generation drug delivery platforms.
尽管融合脂质体为跨革兰氏阴性菌细胞包膜递送抗生素有效载荷提供了一种很有前途的方法,但人们对单个纳米载体与细菌靶标的相互作用仍知之甚少。我们利用超分辨率显微镜,对带正电荷的融合脂质体与革兰氏阴性菌()和革兰氏阳性菌()的相互作用动力学进行了表征。脂质体与革兰氏阴性菌的外膜(OM)融合,而在革兰氏阳性细胞中则观察到附着或脂质内化。我们采用全内反射荧光显微镜,证明了脂质体与模型支持的脂质双层的融合。然而,对于整个细胞,我们观察到异质的膜整合,主要涉及脂质体的附着和半融合事件。随着脂多糖长度的增加,完全融合事件的可能性降低。人工脂质整合到革兰氏阴性细胞的 OM 中会导致膜不稳定,从而降低细菌活力、膜脱落,并改善万古霉素的共递送-一种针对革兰氏阳性细胞的有效抗生素。这些发现为单个纳米载体与细菌包膜在单细胞水平上的相互作用提供了重要的见解,揭示了在批量测量中可能会忽略的影响。这突出表明,进行单粒子和单细胞研究对于评估下一代药物输送平台的性能非常重要。
J Am Chem Soc. 2023-12-27
Int J Antimicrob Agents. 2010-3-9
ACS Appl Mater Interfaces. 2019-4-17
Anim Microbiome. 2025-6-4
Small Sci. 2024-8-13
Bioact Mater. 2025-2-27
Chem Sci. 2024-4-30
Pharmaceutics. 2023-12-26
Nanoscale. 2022-10-6
ACS Infect Dis. 2022-7-8
J Nanobiotechnology. 2022-4-15
Front Mol Biosci. 2021-10-21
ACS Appl Mater Interfaces. 2021-11-17
Nat Rev Mater. 2021
Bioconjug Chem. 2021-8-18