Suppr超能文献

深度学习方法在磁化传递对比磁共振指纹成像和化学交换饱和转移成像中的应用。

A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging.

机构信息

Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroimage. 2020 Nov 1;221:117165. doi: 10.1016/j.neuroimage.2020.117165. Epub 2020 Jul 15.

Abstract

Semisolid magnetization transfer contrast (MTC) and chemical exchange saturation transfer (CEST) MRI based on MT phenomenon have shown potential to evaluate brain development, neurological, psychiatric, and neurodegenerative diseases. However, a qualitative MT ratio (MTR) metric commonly used in conventional MTC imaging is limited in the assessment of quantitative semisolid macromolecular proton exchange rates and concentrations. In addition, CEST signals measured by MTR asymmetry analysis are unavoidably contaminated by upfield nuclear Overhauser enhancement (NOE) signals of mobile and semisolid macromolecules. To address these issues, we developed an MTC-MR fingerprinting (MTC-MRF) technique to quantify tissue parameters, which further allows an estimation of accurate MTC signals at a certain CEST frequency offset. A pseudorandomized RF saturation scheme was used to generate unique MTC signal evolutions for different tissues and a supervised deep neural network was designed to extract tissue properties from measured MTC-MRF signals. Through detailed Bloch equation-based digital phantom and in vivo studies, we demonstrated that the MTC-MRF can quantify MTC characteristics with high accuracy and computational efficiency, compared to a conventional Bloch equation fitting approach, and provide baseline reference signals for CEST and NOE imaging. For validation, MTC-MRF images were synthesized using the tissue parameters estimated from the deep-learning method and compared with experimentally acquired MTC-MRF images as the reference standard. The proposed MTC-MRF framework can provide quantitative 3D MTC, CEST, and NOE imaging of the human brain within a clinically acceptable scan time.

摘要

基于 MT 现象的半固态磁化转移对比 (MTC) 和化学交换饱和转移 (CEST) MRI 已显示出评估大脑发育、神经、精神和神经退行性疾病的潜力。然而,传统 MTC 成像中常用的定性 MT 比 (MTR) 指标在评估定量半固态大分子质子交换率和浓度方面存在局限性。此外,通过 MTR 不对称分析测量的 CEST 信号不可避免地受到移动和半固态大分子的上磁场核奥弗豪瑟增强 (NOE) 信号的污染。为了解决这些问题,我们开发了一种 MTC-MR 指纹图谱 (MTC-MRF) 技术来量化组织参数,这进一步允许在特定 CEST 频率偏移处估计准确的 MTC 信号。使用伪随机化 RF 饱和方案为不同组织生成独特的 MTC 信号演化,并且设计了一个监督深度学习神经网络从测量的 MTC-MRF 信号中提取组织特性。通过详细的基于 Bloch 方程的数字体模和体内研究,我们证明与传统的 Bloch 方程拟合方法相比,MTC-MRF 可以以高精度和计算效率量化 MTC 特性,并为 CEST 和 NOE 成像提供基线参考信号。为了验证,使用从深度学习方法估计的组织参数合成 MTC-MRF 图像,并将其与作为参考标准的实验获得的 MTC-MRF 图像进行比较。所提出的 MTC-MRF 框架可以在可接受的临床扫描时间内提供人脑的定量 3D MTC、CEST 和 NOE 成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验