Suppr超能文献

FK均值算法:使用分形引导的K均值聚类和解剖结构的Voronoi裁剪特征提取进行自动心房纤维化分割。

FK-means: automatic atrial fibrosis segmentation using fractal-guided K-means clustering with Voronoi-clipping feature extraction of anatomical structures.

作者信息

Firouznia Marjan, Henningsson Markus, Carlhäll Carl-Johan

机构信息

Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.

Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.

出版信息

Interface Focus. 2023 Dec 15;13(6):20230033. doi: 10.1098/rsfs.2023.0033. eCollection 2023 Dec 6.

Abstract

Assessment of left atrial (LA) fibrosis from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) adds to the management of patients with atrial fibrillation. However, accurate assessment of fibrosis in the LA wall remains challenging. Excluding anatomical structures in the LA proximity using clipping techniques can reduce misclassification of LA fibrosis. A novel FK-means approach for combined automatic clipping and automatic fibrosis segmentation was developed. This approach combines a feature-based Voronoi diagram with a hierarchical 3D K-means fractal-based method. The proposed automatic Voronoi clipping method was applied on LGE-MRI data and achieved a Dice score of 0.75, similar to the score obtained by a deep learning method (3D UNet) for clipping (0.74). The automatic fibrosis segmentation method, which uses the Voronoi clipping method, achieved a Dice score of 0.76. This outperformed a 3D UNet method for clipping and fibrosis classification, which had a Dice score of 0.69. Moreover, the proposed automatic fibrosis segmentation method achieved a Dice score of 0.90, using manual clipping of anatomical structures. The findings suggest that the automatic FK-means analysis approach enables reliable LA fibrosis segmentation and that clipping of anatomical structures in the atrial proximity can add to the assessment of atrial fibrosis.

摘要

通过延迟钆增强(LGE)磁共振成像(MRI)评估左心房(LA)纤维化有助于房颤患者的管理。然而,准确评估LA壁中的纤维化仍然具有挑战性。使用裁剪技术排除LA附近的解剖结构可以减少LA纤维化的错误分类。开发了一种用于自动裁剪和纤维化分割相结合的新型FK均值方法。该方法将基于特征的Voronoi图与基于分层3D K均值分形的方法相结合。所提出的自动Voronoi裁剪方法应用于LGE-MRI数据,获得了0.75的Dice分数,与深度学习方法(3D UNet)用于裁剪的分数(0.74)相似。使用Voronoi裁剪方法的自动纤维化分割方法获得了0.76的Dice分数。这优于用于裁剪和纤维化分类的3D UNet方法,其Dice分数为0.69。此外,所提出的自动纤维化分割方法在使用解剖结构的手动裁剪时获得了0.90的Dice分数。研究结果表明,自动FK均值分析方法能够实现可靠的LA纤维化分割,并且在心房附近裁剪解剖结构可以增加对心房纤维化的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb45/10722213/692ca279cdc6/rsfs20230033f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验