Suppr超能文献

预测哮喘急性发作的机器学习方法:一篇叙述性综述。

Machine Learning Approaches to Predict Asthma Exacerbations: A Narrative Review.

作者信息

Molfino Nestor A, Turcatel Gianluca, Riskin Daniel

机构信息

Global Development, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.

Digital Health and Innovation, Amgen Inc., Thousand Oaks, CA, USA.

出版信息

Adv Ther. 2024 Feb;41(2):534-552. doi: 10.1007/s12325-023-02743-3. Epub 2023 Dec 19.

Abstract

The implementation of artificial intelligence (AI) and machine learning (ML) techniques in healthcare has garnered significant attention in recent years, especially as a result of their potential to revolutionize personalized medicine. Despite advances in the treatment and management of asthma, a significant proportion of patients continue to suffer acute exacerbations, irrespective of disease severity and therapeutic regimen. The situation is further complicated by the constellation of factors that influence disease activity in a patient with asthma, such as medical history, biomarker phenotype, pulmonary function, level of healthcare access, treatment compliance, comorbidities, personal habits, and environmental conditions. A growing body of work has demonstrated the potential for AI and ML to accurately predict asthma exacerbations while also capturing the entirety of the patient experience. However, application in the clinical setting remains mostly unexplored, and important questions on the strengths and limitations of this technology remain. This review presents an overview of the rapidly evolving landscape of AI and ML integration into asthma management by providing a snapshot of the existing scientific evidence and proposing potential avenues for future applications.

摘要

近年来,人工智能(AI)和机器学习(ML)技术在医疗保健领域的应用备受关注,尤其是因其具有变革个性化医疗的潜力。尽管哮喘的治疗和管理取得了进展,但仍有很大一部分患者持续遭受急性加重,无论疾病严重程度和治疗方案如何。影响哮喘患者疾病活动的一系列因素,如病史、生物标志物表型、肺功能、医疗保健可及性水平、治疗依从性、合并症、个人习惯和环境条件,使情况更加复杂。越来越多的研究表明,人工智能和机器学习有潜力准确预测哮喘加重,同时还能全面了解患者的情况。然而,该技术在临床环境中的应用大多仍未得到探索,关于这项技术的优势和局限性的重要问题依然存在。本综述通过提供现有科学证据的简要概述并提出未来应用的潜在途径,对人工智能和机器学习融入哮喘管理的快速发展态势进行了概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0185/10838858/17b29f0e8845/12325_2023_2743_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验