Suppr超能文献

机器学习识别丹麦人群中与新冠病毒病后长期病假相关的风险因素。

Machine learning identifies risk factors associated with long-term sick leave following COVID-19 in Danish population.

作者信息

Jakobsen Kim Daniel, O'Regan Elisabeth, Svalgaard Ingrid Bech, Hviid Anders

机构信息

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

Pharmacovigilance Research Centre, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.

出版信息

Commun Med (Lond). 2023 Dec 20;3(1):188. doi: 10.1038/s43856-023-00423-5.

Abstract

BACKGROUND

Post COVID-19 condition (PCC) can lead to considerable morbidity, including prolonged sick-leave. Identifying risk groups is important for informing interventions. We investigated heterogeneity in the effect of SARS-CoV-2 infection on long-term sick-leave and identified subgroups at higher risk.

METHODS

We conducted a hybrid survey and register-based retrospective cohort study of Danish residents who tested positive for SARS-CoV-2 between November 2020 and February 2021 and a control group who tested negative, with no known history of SARS-CoV-2. We estimated the causal risk difference (RD) of long-term sick-leave due to PCC and used the causal forest method to identify individual-level heterogeneity in the effect of infection on sick-leave. Sick-leave was defined as >4 weeks of full-time sick-leave from 4 weeks to 9 months after the test.

RESULTS

Here, in a cohort of 88,818 individuals, including 37,482 with a confirmed SARS-CoV-2 infection, the RD of long-term sick-leave is 3.3% (95% CI 3.1% to 3.6%). We observe a high degree of effect heterogeneity, with conditional RDs ranging from -3.4% to 13.7%. Age, high BMI, depression, and sex are the most important variables explaining heterogeneity. Among three-way interactions considered, females with high BMI and depression and persons aged 36-45 years with high BMI and depression have an absolute increase in risk of long-term sick-leave above 10%.

CONCLUSIONS

Our study supports significant individual-level heterogeneity in the effect of SARS-CoV-2 infection on long-term sick-leave, with age, sex, high BMI, and depression identified as key factors. Efforts to curb the PCC burden should consider multimorbidity and individual-level risk.

摘要

背景

新冠后状况(PCC)可导致相当程度的发病,包括长期病假。识别风险群体对于指导干预措施很重要。我们研究了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染对长期病假影响的异质性,并确定了高风险亚组。

方法

我们对2020年11月至2021年2月期间SARS-CoV-2检测呈阳性的丹麦居民以及检测呈阴性且无SARS-CoV-2已知病史的对照组进行了混合调查和基于登记的回顾性队列研究。我们估计了PCC导致的长期病假的因果风险差异(RD),并使用因果森林方法识别感染对病假影响的个体水平异质性。病假定义为检测后4周内至9个月内超过4周的全时病假。

结果

在一个包括37482例确诊SARS-CoV-2感染患者的88818人队列中,长期病假的RD为3.3%(95%CI 3.1%至3.6%)。我们观察到高度的效应异质性,条件RD范围为-3.4%至13.7%。年龄、高体重指数、抑郁症和性别是解释异质性的最重要变量。在考虑的三方相互作用中,高体重指数且患有抑郁症的女性以及年龄在36 - 45岁且高体重指数且患有抑郁症的人长期病假风险绝对增加超过10%。

结论

我们的研究支持SARS-CoV-2感染对长期病假影响存在显著的个体水平异质性,年龄、性别、高体重指数和抑郁症被确定为关键因素。减轻PCC负担的努力应考虑多病共存和个体水平风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/623a/10733276/14261c99d78f/43856_2023_423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验