Suppr超能文献

基于影像学的结核病早期诊断和元认知模型可视化。

Early diagnosis and meta-agnostic model visualization of tuberculosis based on radiography images.

机构信息

Department of Computer Science and Engineering, School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.

Department of Information Technology, School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.

出版信息

Sci Rep. 2023 Dec 20;13(1):22803. doi: 10.1038/s41598-023-49195-x.

Abstract

Despite being treatable and preventable, tuberculosis (TB) affected one-fourth of the world population in 2019, and it took the lives of 1.4 million people in 2019. It affected 1.2 million children around the world in the same year. As it is an infectious bacterial disease, the early diagnosis of TB prevents further transmission and increases the survival rate of the affected person. One of the standard diagnosis methods is the sputum culture test. Diagnosing and rapid sputum test results usually take one to eight weeks in 24 h. Using posterior-anterior chest radiographs (CXR) facilitates a rapid and more cost-effective early diagnosis of tuberculosis. Due to intraclass variations and interclass similarities in the images, TB prognosis from CXR is difficult. We proposed an early TB diagnosis system (tbXpert) based on deep learning methods. Deep Fused Linear Triangulation (FLT) is considered for CXR images to reconcile intraclass variation and interclass similarities. To improve the robustness of the prognosis approach, deep information must be obtained from the minimal radiation and uneven quality CXR images. The advanced FLT method accurately visualizes the infected region in the CXR without segmentation. Deep fused images are trained by the Deep learning network (DLN) with residual connections. The largest standard database, comprised of 3500 TB CXR images and 3500 normal CXR images, is utilized for training and validating the recommended model. Specificity, sensitivity, Accuracy, and AUC are estimated to determine the performance of the proposed systems. The proposed system demonstrates a maximum testing accuracy of 99.2%, a sensitivity of 98.9%, a specificity of 99.6%, a precision of 99.6%, and an AUC of 99.4%, all of which are pretty high when compared to current state-of-the-art deep learning approaches for the prognosis of tuberculosis. To lessen the radiologist's time, effort, and reliance on the level of competence of the specialist, the suggested system named tbXpert can be deployed as a computer-aided diagnosis technique for tuberculosis.

摘要

尽管结核病 (TB) 可以治疗和预防,但 2019 年仍有四分之一的世界人口受到感染,有 140 万人因此死亡。同年,全球有 120 万儿童受到影响。由于结核病是一种传染性细菌疾病,早期诊断可以防止进一步传播并提高受感染者的存活率。标准诊断方法之一是痰培养试验。诊断和快速痰检结果通常需要 24 小时内 1 至 8 周的时间。使用前后位胸部 X 光片 (CXR) 可以快速、更具成本效益地早期诊断结核病。由于图像中的类内变异性和类间相似性,CXR 对结核病的预后诊断较为困难。我们提出了一种基于深度学习方法的早期结核病诊断系统 (tbXpert)。深度融合线性三角剖分 (FLT) 用于 CXR 图像,以协调类内变异性和类间相似性。为了提高预后方法的稳健性,必须从最小辐射和不均匀质量的 CXR 图像中获取深度信息。先进的 FLT 方法无需分割即可准确显示 CXR 中的感染区域。深度融合图像由具有残差连接的深度学习网络 (DLN) 进行训练。利用包含 3500 张 TB CXR 图像和 3500 张正常 CXR 图像的最大标准数据库对推荐模型进行训练和验证。通过估计特异性、敏感性、准确性和 AUC 来确定所提出系统的性能。所提出的系统在测试中表现出 99.2%的最大准确率、98.9%的敏感性、99.6%的特异性、99.6%的精确率和 99.4%的 AUC,与目前用于结核病预后的最先进的深度学习方法相比,这些指标都非常高。为了减少放射科医生的时间、精力和对专家水平的依赖,建议的系统名为 tbXpert,可以作为结核病的计算机辅助诊断技术进行部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ba/10739730/c98f5c674743/41598_2023_49195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验