Suppr超能文献

基于混合视觉Transformer和主成分分析的胸部X光片稳健肺结核诊断

A Robust Tuberculosis Diagnosis Using Chest X-Rays Based on a Hybrid Vision Transformer and Principal Component Analysis.

作者信息

El-Ghany Sameh Abd, Elmogy Mohammed, A Mahmood Mahmood, Abd El-Aziz A A

机构信息

Department of Information Systems, College of Computer and Information Sciences, Jouf University, Aljouf, P.O. Box 2014, Sakaka 72388, Saudi Arabia.

Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura P.O. Box 35516, Egypt.

出版信息

Diagnostics (Basel). 2024 Dec 5;14(23):2736. doi: 10.3390/diagnostics14232736.

Abstract

: Tuberculosis (TB) is a bacterial disease that mainly affects the lungs, but it can also impact other parts of the body, such as the brain, bones, and kidneys. The disease is caused by a bacterium called Mycobacterium tuberculosis and spreads through the air when an infected person coughs or sneezes. TB can be inactive or active; in its active state, noticeable symptoms appear, and it can be transmitted to others. There are ongoing challenges in fighting TB, including resistance to medications, co-infections, and limited resources in areas heavily affected by the disease. These issues make it challenging to eradicate TB. Objective: Timely and precise diagnosis is essential for effective control, especially since TB often goes undetected and untreated, particularly in remote and under-resourced locations. Chest X-ray (CXR) images are commonly used to diagnose TB. However, difficulties can arise due to unusual findings on X-rays and a shortage of radiologists in high-infection areas. : To address these challenges, a computer-aided diagnosis (CAD) system that uses the vision transformer (ViT) technique has been developed to accurately identify TB in CXR images. This innovative hybrid CAD approach combines ViT with Principal Component Analysis (PCA) and machine learning (ML) techniques for TB classification, introducing a new method in this field. In the hybrid CAD system, ViT is used for deep feature extraction as a base model, PCA is used to reduce feature dimensions, and various ML methods are used to classify TB. This system allows for quickly identifying TB, enabling timely medical action and improving patient outcomes. Additionally, it streamlines the diagnostic process, reducing time and costs for patients and lessening the workload on healthcare professionals. The TB chest X-ray dataset was utilized to train and evaluate the proposed CAD system, which underwent pre-processing techniques like resizing, scaling, and noise removal to improve diagnostic accuracy. : The performance of our CAD model was assessed against existing models, yielding excellent results. The model achieved remarkable metrics: an average precision of 99.90%, recall of 99.52%, F1-score of 99.71%, accuracy of 99.84%, false negative rate (FNR) of 0.48%, specificity of 99.52%, and negative predictive value (NPV) of 99.90%. : This evaluation highlights the superior performance of our model compared to the latest available classifiers.

摘要

结核病(TB)是一种细菌性疾病,主要影响肺部,但也可能影响身体的其他部位,如大脑、骨骼和肾脏。该疾病由一种名为结核分枝杆菌的细菌引起,当感染者咳嗽或打喷嚏时通过空气传播。结核病可以处于非活动状态或活动状态;在其活动状态下,会出现明显症状,并且可以传染给他人。在抗击结核病方面存在持续的挑战,包括对药物的耐药性、合并感染以及疾病严重流行地区资源有限。这些问题使得根除结核病具有挑战性。目标:及时准确的诊断对于有效控制至关重要,特别是因为结核病常常未被发现和治疗,尤其是在偏远和资源匮乏地区。胸部X线(CXR)图像常用于诊断结核病。然而,由于X线检查结果异常以及高感染地区放射科医生短缺,可能会出现困难。

为应对这些挑战,已开发出一种使用视觉Transformer(ViT)技术的计算机辅助诊断(CAD)系统,以准确识别CXR图像中的结核病。这种创新的混合CAD方法将ViT与主成分分析(PCA)和机器学习(ML)技术相结合用于结核病分类,在该领域引入了一种新方法。在混合CAD系统中,ViT用作基础模型进行深度特征提取,PCA用于降低特征维度,各种ML方法用于对结核病进行分类。该系统能够快速识别结核病,使医疗行动及时进行并改善患者预后。此外,它简化了诊断过程,减少了患者的时间和成本,并减轻了医护人员的工作量。利用结核病胸部X线数据集对所提出的CAD系统进行训练和评估,该数据集经过了调整大小、缩放和去除噪声等预处理技术以提高诊断准确性。

将我们的CAD模型的性能与现有模型进行评估,取得了优异的结果。该模型实现了出色的指标:平均精度为99.90%,召回率为99.52%,F1分数为99.71%,准确率为99.84%,假阴性率(FNR)为0.48%,特异性为99.52%,阴性预测值(NPV)为99.90%。

该评估突出了我们的模型相对于最新可用分类器的卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d9e/11640000/975591e01c10/diagnostics-14-02736-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验