Suppr超能文献

运用数据挖掘方法分析生物化学和血液学因素与 COVID-19 的关系。

Association between biochemical and hematologic factors with COVID-19 using data mining methods.

机构信息

International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.

Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

BMC Infect Dis. 2023 Dec 21;23(1):897. doi: 10.1186/s12879-023-08676-0.

Abstract

BACKGROUND AND AIM

Coronavirus disease (COVID-19) is an infectious disease that can spread very rapidly with important public health impacts. The prediction of the important factors related to the patient's infectious diseases is helpful to health care workers. The aim of this research was to select the critical feature of the relationship between demographic, biochemical, and hematological characteristics, in patients with and without COVID-19 infection.

METHOD

A total of 13,170 participants in the age range of 35-65 years were recruited. Decision Tree (DT), Logistic Regression (LR), and Bootstrap Forest (BF) techniques were fitted into data. Three models were considered in this study, in model I, the biochemical features, in model II, the hematological features, and in model II, both biochemical and homological features were studied.

RESULTS

In Model I, the BF, DT, and LR algorithms identified creatine phosphokinase (CPK), blood urea nitrogen (BUN), fasting blood glucose (FBG), total bilirubin, body mass index (BMI), sex, and age, as important predictors for COVID-19. In Model II, our BF, DT, and LR algorithms identified BMI, sex, mean platelet volume (MPV), and age as important predictors. In Model III, our BF, DT, and LR algorithms identified CPK, BMI, MPV, BUN, FBG, sex, creatinine (Cr), age, and total bilirubin as important predictors.

CONCLUSION

The proposed BF, DT, and LR models appear to be able to predict and classify infected and non-infected people based on CPK, BUN, BMI, MPV, FBG, Sex, Cr, and Age which had a high association with COVID-19.

摘要

背景与目的

冠状病毒病(COVID-19)是一种传染性疾病,传播速度非常快,对公共卫生有重大影响。预测与患者传染病相关的重要因素有助于医护人员。本研究的目的是选择与 COVID-19 感染相关的人口统计学、生化和血液学特征的关键特征。

方法

共招募了 13170 名年龄在 35-65 岁之间的参与者。决策树(DT)、逻辑回归(LR)和引导森林(BF)技术被应用于数据中。本研究考虑了三种模型,在模型 I 中,研究了生化特征,在模型 II 中,研究了血液学特征,在模型 III 中,同时研究了生化和同源特征。

结果

在模型 I 中,BF、DT 和 LR 算法确定肌酸磷酸激酶(CPK)、血尿素氮(BUN)、空腹血糖(FBG)、总胆红素、体重指数(BMI)、性别和年龄是 COVID-19 的重要预测因子。在模型 II 中,我们的 BF、DT 和 LR 算法确定 BMI、性别、平均血小板体积(MPV)和年龄是重要的预测因子。在模型 III 中,我们的 BF、DT 和 LR 算法确定 CPK、BMI、MPV、BUN、FBG、性别、肌酐(Cr)、年龄和总胆红素是重要的预测因子。

结论

所提出的 BF、DT 和 LR 模型似乎能够根据与 COVID-19 高度相关的 CPK、BUN、BMI、MPV、FBG、性别、Cr 和年龄预测和分类感染者和未感染者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2246/10734144/c127d8f1a21f/12879_2023_8676_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验