Greive Sandra J, Bacri Laurent, Cressiot Benjamin, Pelta Juan
DreamPore S.A.S., 33 Boulevard du Port, 95000 Cergy, France.
Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France.
ACS Nano. 2024 Jan 9;18(1):539-550. doi: 10.1021/acsnano.3c08433. Epub 2023 Dec 22.
There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.
当前需要开发用于在复杂分子混合物(如生物流体)中灵敏检测肽生物标志物的方法,以实现疾病的早期检测。此外,据我们所知,目前尚无能够识别仅相差一个氨基酸的肽生物标志物不同构象的检测方法。单分子纳米孔传感有望提供这种分辨率水平。为了能够在血清等生物流体中识别这些差异,有必要仔细表征电学参数,以获得所观察到的每个生物标志物群体的特定特征。我们在此关注一类肽生物标志物,即激肽,如缓激肽和去精氨酸缓激肽,它们参与许多致残性疾病(过敏、哮喘、血管性水肿、败血症或癌症)。我们展示了使用蛋白质纳米孔在单分子水平直接鉴定血清中这些生物标志物的概念验证。每种肽都表现出两种独特的电学特征,这归因于其在本体中的特定构象。在血清中也发现了相同的特征,从而能够在生物流体等复杂混合物中对它们进行区分和鉴定。为了扩展我们实验结果的实用性,我们开发了一种主成分分析方法来定义用于其鉴定的最相关电学参数。最后,我们使用半监督分类将每种事件类型分配给生理血清浓度下的特定生物标志物。未来,使用强大的纳米孔结合机器学习对肽生物标志物进行单分子尺度分析,将有助于从生物流体中识别和定量其他临床相关生物标志物。