Ilić Marko, Pastor Kristian, Ilić Aleksandra, Vasić Mirjana, Nastić Nataša, Vujić Đura, Ačanski Marijana
Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia.
Institute of Fields and Vegetable Crops, 21000 Novi Sad, Serbia.
Foods. 2023 Dec 9;12(24):4420. doi: 10.3390/foods12244420.
This study presents a tentative analysis of the lipid composition of 47 legume samples, encompassing species such as spp., spp., spp., and spp. Lipid extraction and GC/MS (gas chromatography with mass spectrometric detection) analysis were conducted, followed by multivariate statistical methods for data interpretation. Hierarchical Cluster Analysis (HCA) revealed two major clusters, distinguishing beans and snap beans ( spp.) from faba beans (), peas (), and grass peas (). Principal Component Analysis (PCA) yielded 2D and 3D score plots, effectively discriminating legume species. Linear Discriminant Analysis (LDA) achieved a 100% accurate classification of the training set and a 90% accuracy of the test set. The lipid-based fingerprinting elucidated compounds crucial for discrimination. Both PCA and LDA biplots highlighted squalene and fatty acid methyl esters (FAMEs) of 9,12,15-octadecatrienoic acid (C18:3) and 5,11,14,17-eicosatetraenoic acid (C20:4) as influential in the clustering of beans and snap beans. Unique compounds, including 13-docosenoic acid (C22:1) and γ-tocopherol, O-methyl-, characterized grass pea samples. Faba bean samples were discriminated by FAMEs of heneicosanoic acid (C21:0) and oxiraneoctanoic acid, 3-octyl- (C18-ox). However, C18-ox was also found in pea samples, but in significantly lower amounts. This research demonstrates the efficacy of lipid analysis coupled with multivariate statistics for accurate differentiation and classification of legumes, according to their botanical origins.
本研究对47个豆类样本的脂质成分进行了初步分析,这些样本涵盖了诸如 属、 属、 属和 属等物种。进行了脂质提取和气相色谱/质谱联用(GC/MS)分析,随后采用多元统计方法进行数据解读。层次聚类分析(HCA)揭示了两个主要聚类,将菜豆和四季豆( 属)与蚕豆( )、豌豆( )和山黧豆( )区分开来。主成分分析(PCA)生成了二维和三维得分图,有效地区分了豆类物种。线性判别分析(LDA)对训练集的分类准确率达到100%,对测试集的准确率为90%。基于脂质的指纹图谱阐明了对鉴别至关重要的化合物。PCA和LDA双标图均突出显示角鲨烯以及9,12,15-十八碳三烯酸(C18:3)和5,11,14,17-二十碳四烯酸(C20:4)的脂肪酸甲酯(FAMEs)对菜豆和四季豆的聚类有影响。包括13-二十二碳烯酸(C22:1)和γ-生育酚(O-甲基-)在内的独特化合物是山黧豆样本的特征。蚕豆样本通过二十一烷酸(C21:0)和环氧辛烷酸(3-辛基-(C18-ox))的FAMEs进行区分。然而,C18-ox在豌豆样本中也有发现,但含量显著较低。本研究证明了脂质分析与多元统计相结合对于根据豆类的植物来源进行准确鉴别和分类的有效性。