Suppr超能文献

通过多注意力机制增强数字病理学图像识别:MACC-Net方法

Enhanced digital pathology image recognition via multi-attention mechanisms: the MACC-Net approach.

作者信息

Liu Feng, Wang Zheng, Li Baotian, Wang Decai, Liu Mingyu, Gou Fangfang, Wu Jia

机构信息

School of Information Engineering, Shandong Youth University of Political Science, Jinan, China.

New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan, China.

出版信息

Sci Rep. 2025 Aug 25;15(1):31269. doi: 10.1038/s41598-025-17369-4.

Abstract

Digital pathology has revolutionized cancer diagnosis through microscopic analysis, yet manual interpretation remains hindered by inefficiency and subjectivity. Existing deep models for osteosarcoma cell nucleus recognition suffer from the difficulty of capturing hierarchical relationships in single-dimensional attention mechanisms, leading to inaccurate edge recognition. Furthermore, the fixed receptive field of CNNs limits the aggregation of multi-scale information, hindering the differentiation of overlapping cells. This study introduces MACC-Net, a novel multi-attention based method designed to enhance the recognition accuracy of digital pathology images. By integrating channel, spatial, and pixel-level attention mechanisms, MACC-Net overcomes the limitations of traditional single-dimensional attention models, improving feature consistency and receptive field expansion. Experimental results demonstrate a Dice Similarity Coefficient (DSC) of 0.847, highlighting MACC-Net's potential as a reliable auxiliary diagnostic tool for pathologists. Code: https://github.com/GFF1228/MACCNet .

摘要

数字病理学通过微观分析彻底改变了癌症诊断,但人工解读仍因效率低下和主观性而受到阻碍。现有的骨肉瘤细胞核识别深度模型在捕捉单维注意力机制中的层次关系方面存在困难,导致边缘识别不准确。此外,卷积神经网络(CNN)的固定感受野限制了多尺度信息的聚合,阻碍了重叠细胞的区分。本研究引入了MACC-Net,这是一种基于多注意力的新颖方法,旨在提高数字病理学图像的识别准确性。通过整合通道、空间和像素级注意力机制,MACC-Net克服了传统单维注意力模型的局限性,提高了特征一致性并扩大了感受野。实验结果表明,其Dice相似系数(DSC)为0.847,凸显了MACC-Net作为病理学家可靠辅助诊断工具的潜力。代码:https://github.com/GFF1228/MACCNet

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验