IEEE Trans Med Imaging. 2017 Mar;36(3):802-814. doi: 10.1109/TMI.2016.2629462. Epub 2016 Nov 16.
The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.
计算特征与语义特征之间的差距是制约计算机辅助诊断(CAD)从临床应用中发挥作用的主要因素之一。为了弥合这一差距,我们利用三种多任务学习(MTL)方案,利用来自堆叠去噪自动编码器(SDAE)和卷积神经网络(CNN)的深度学习模型以及手工制作的 Haar 样和 HoG 特征所提取的异构计算特征,来描述 CT 图像中肺结节的 9 个语义特征。我们认为,“毛刺”、“纹理”、“边界”等语义特征之间可能存在关系,可以通过 MTL 来探索这些关系。本研究采用了肺图像数据库联盟(LIDC)的数据,该数据具有丰富的标注资源。LIDC 结节由美国多家机构的 12 位放射科医生根据 9 个语义特征进行定量评分。通过将每个语义特征视为一个单独的任务,MTL 方案在 LIDC 数据集的 2400 个随机选择的结节上使用交叉验证评估方案,选择并将异构计算特征映射到放射科医生的评分上。实验结果表明,与单任务 LASSO 和弹性网回归方法相比,三种 MTL 方案预测的语义评分更接近放射科医生的评分。所提出的语义属性评分方案可为结节提供更丰富的定量评估,从而更好地支持诊断决策和管理。同时,我们的方法还可以自动将医学图像内容与临床语义术语关联起来,这也有助于开发医学搜索引擎。